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CATCULATION OF THE TURBULENT BOUNDARY LAYER AND OF TRANSITION
ON A PLANE PLATE

R

R.Hirsch

ABSTRACT. Calculations of the turbulent boundary layer and
transition on a plane plate are derived in detail, including
the following: study of a solution of two Navier-Stokes equa—~
tions inducing a stationary field analogous to the average
turbulent field; existence of an asymptotic solution and de-
termination of the development of friction; study of the ef-
fect of an exterior harmonic perturbation of wavelength A.
#For a critical Reynolds number of 0.0037, the Blasius state

is unable to exist and must be replaced by the newly de-
veloped state. The perturbations permitting such substitu~

4 tion and formed over the segment of 5 R, are derived, and the
calculations are extrapolated to the compressible state with
heat exchange. Comparisons of the results with practical ex-
periments show agreement with the Blaslius theory of the laminar
regime. A possibility exists to maintain the laminar state by
replacing the rigid wall with an elastic membrane whose tension
would be made dependent on the pulsation of the exterior per—
turbation which ordinarily causes passage to the turbulent
state.

INTRODUCTION

The classical theories of the turbulent boundary layer attribute to the
constituent particles the property of passing from one level to the other and,
by the process of collision, to lose or gain momentum, to the profit or detri-
ment of neighboring particles.

This leads to the concept of mixing lengths of the order of a millimeter.
The process reduces to putting in force, at the macroscopic scale, the data
which at the infinitely small scale of the kinetic theory of gases explain the
existence of viscosity stresses. However, in the kinetic theory of gases it is
a question of individualized molecules mutually isolated without interposition
of a continuous medium since the lengths of the mean free paths are so small
that, at the macroscopic scale, the total aggregate can be regarded as being
continuous, at least in the statistical sense.

One could ask here why the same basic phenomenon is encountered at two such
widely differing scales, and it is not easy to concelve how the sensible reality

* Numbers in the margin indicate pagination in the foreign text.
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of air at atmospheric pressure could, at the scale of a millimeter, be compati-
ble with the concept of a discontinuous medium which presupposes the mixing of
particles from layer to layer.

A Nevertheless, is it really impossible, within the framework of general equa-
tions of continuous media whose rational bage is falrly solid, to cause the ap-
pearance of the essential properties of fluid motion in turbulent boundary
layers? This is finally the question that we are attempting to answer, although
by frequently cumbersome means.

For this reason, it is necessary to give a proper elucidation of all con-
sidered points.

For example, why would the two approaches to the problem of boundary layers,
where one is constituted by the Blasius theory (with its hypotheses of invari-
ance of pressure) and the other by the method proposed here, be the object to
two types of flow existing in nature effectively and successively?

No doubt, we can invoke here the notion of maximum energy dissipation to
justify the preferential establishment of laminar flow (at Reynolds numbers be-
low 1000, the laminar friction is actually greater than the turbulent friction).
However, this merely represents an overall explanation which does not furnish
complete information.

Why does an abrupt condensation of rotation take place in a very thin sub-
layer, as soon as the turbulent state is established? The equations confirm
this phenomenon and experiments substantiate it; however, no meaningful explana-
tion exists at present.

S5till other questions remain in suspense.

No matter how this might be, it will be demonstrated below that it is /2
possible, in a continuous medium, to demonstrate theoretically a state differing
from the Blasius state, such that the velocity field, the evolution of boundary
layer thickness, the evolution of friction, and the state of turbulence will be
more or less in agreement with the data obtained from practical experiments on
the turbulent boundary layer of a plane plate. It is also possible to investi-
gate the connectivity zone with the Blasius state, i.e., the gone of transition,
and thus to obtain determinations which satisfactorily agree with the experi-~
mental results. Finally, a study of the compressible case with heat exchange
can be undertaken. This constitutes the general justification of our essay.

We wish to express thanks to all those who aided our work with advice and

comprehension, Prof. Eichelbrenner, Prof. Oudart, and Chief Engineer Vernotte.
The paper is dedicated to the memory of my teacher Prof. Albert Toussaint.



PART I

STUDY OF THE INCOMPRESSIBLE STATIONARY CASE



CHAPTER I )

FUNDAMENTAL, FORMULAS AND STUDY OF THE ACTUAL BOUNDARY LAYER

1. Fundamental Formulas

Let there be an incompressible two-dimensional flow in contact with the
rectilinear wall of a plane plate; let Uy be the value of the potential velocity
on an abscissa segment x. The axes are fixed with respect to the wall, with the

origin of x represented by the lead-

Yand y ing edge of the plate.

<

, Let us take as basic diagram of
—_— . first approximation of the velocity U,
Y, starting from the wall, a scheme show-
‘ ing the following (Fig.1):
v /u | 1) a boundary sublayer e, at
. Voo whose top the velocity is
U,%; ¢ is extremely small

so that U, is more or less
parallel to the wall;
p— et - 2) a boundary layer E known
€ X Wall e as "actual boundary layer"
Fig.l in which the velocity in~
ge . creases from U, to a value
extremely close to Us.

It is stipulated that Us is constant and parallel to the wall. At some _Lé
level Y (where y = Y — €), comprised between ¢ and (E + €), we will assume that
the tangential velocity U principally follows a linear distribution in y be-
tween Uy and Us, such that

UW=U+T] where  T=U,—U,

The normal velocity will be denoted by V(y).

For the time being, we will use § for a selected arbitrary thickness, with
the distribution U(y) linear in y, so as to represent the mean field of a turbu-
lent boundary layer in the best possible manner.

It will be assumed that the derivatives with respect to x, U/ _, ﬁx' = =U{,
are very small relative to the partial derivative of U with I‘espec?{: to y; it will

* Between the wall and the border line of the sublayer, it is necessary, so as

to have zero velocity U at the wall, to assume the presence of particles in ro-
Uy

tation rolling along the wall at the mean driving velocity - -

L




also be assumed that ES, €/ are of the same order of magnitude as U{,.

Our investigation primarily is concerned with the problem in y, in some
section x of the actual boundary layer £, comprising a determination of the laws
u(y), v(y) of the complementary velocities assumed as small relative to U(y),
which permits satisfying the Navier-Stokes equations at the condition of con~
tinuity and at the boundary conditions to be respected.

Tn this problem, €, £, U; (and thus U) will be considered as given.

This yields a velocity distribution of the boundary layer, which — for con-
venience ~ will be denoted by the term "stationary turbulent” boundary layer.
The justification of this designation will appear only in a nonstationary study.

_ The next problem to be attacked will be an investigation of the evolution
of U, Uy, €, £ as a function of x and a study of the comnectivity conditions
with the laminar boundary layer which (with respect to x) precedes the "turbu~
lent" layer.

2. General Fquations

Our computational hypotheses, referring to the orders of magnitude, will be
the following:

Us, U (thus, Uy = U - U), principal £ as well as U -%r-;

u and

)
au of the first order of smallness;
y
v and all derivatives with respect to x, of the second order.
The continuity condition, applied to the velocity components U and V of the

basic diagram <U =U,+ 0 —§L>, leads to

whence™ 17

* It should be noted here that the streamline passing through y = € has the fol-
lowing slope, even if U/ = O:

wal= [ = —a (3).- 5 - 50, T &m0,

U ) (v, IE T
If Uf ~ 0, we have 20 % as remainder and thus 52 = 5

that, in general, the normal velocity at the boundary & is not zero and that the
stream traverses this boundary.

. This shows




v 2
e[ rous]mn

Since, for y = 0, V £ 0, a plane plate is involved, the constant will be

zero. Then, the following expressions are obtained:

WU_T aU_ Ty, ¥y »U_ Ty
%y & 3z ¥ E); o = ( )
h) h)

E:‘
AV (UY _ v TV .., RV TV
v y<if_u,“' S2=—u(g).— U Se=—(3).
NV U\
w =P U

Finally, the rotations are written in the form

_1lpy_auy_ i Ty L T 1T
For the first members of the Navier-Stokes equations, we tlmus obtain

20 YU 1 3p_(mu 1\ (DY Ty T 1
Use+V3y +B'7=<U'2+U*>(T) 'y—3('z‘) G+ Uyl 4y

. « 2
udY vV 1-,2_P=_(ﬁy+u~) TV
0y T e dy g 1!"(2"),:

() S v o{p(@Lroaf 453
+) %5 +U,,.. - ! =,
TIE e T U (), T U+
For the second members, it follows that
R»U | »UY Ty
Gz 5) = (B

xz
(b’ vV BV
v

33— B o (B

where v is the kinematic viscosity, p the pressure, and p the specific mass.

The term V

2p
YN

S contains products of derivatives with respect to x; this /8
y

term is negligible in view of our convention regarding the orders of magnitude.

Such a distribution scheme of the velocities U (at constant gradient U!),

if it satisfies the continuity condition, obviously does not satisfy the Navier—
Stokes equations.

To the preceding velocities U, V it is necessary to add unknown perturba-



tion components u, v deriving from a stream function ¥ (in which case the con-

tinuity condition will be satisfied) by means of which the Navier equations

relative to the total velocities Uior = U * u, Viet = V + v will be satisfied.
It is possible to give a solution only in the case in which —%— (and —%%)

can be assumed as small (and very small), a case where a linearization method
similar to the Schlichting perturbation method will be applicable.,

We will know only afterwards whether the admitted simplification had been
justified®.

2.1 Complementary Stream Function

Let us now consider a stream function ¥(x, y) such that ¢Y =u, -y, =
and let us derive the Navier equations with the total velocity componentss

Utot=%y +U1+‘yu: Vlot-‘-‘-‘—l_y +Ul, J+ ]-

Since d vlnl = E— +U,1, + ¢ v = va‘l;ot' they are, in complete form,
U ' ' v
Ey'f‘Ux‘*‘Vu J+Ul=+‘l’ux +UI= y+9a _‘+¢

p b—z_ =V [J( > ;.+ Uipe + 9" + \;‘"u']

_[%y+Uy+ViHK%X =+ U, U+V:1 LG*x-2+UM e ]

U
<[ e v

+—1- . op = —v[(it_g); —l‘g + U y + ‘1“":"*‘(-_?'); o+ "y |

The pressure p can be eliminated by deriving the first of these expressions
with respect to y and the second with respect to x and then subtracting term /9
by term. This process is that used by Schlichting which, classically, leads to
what we commonly call the fundamental relation of formation of rotations:

* In fact, it will be found that, at the maximum, % assumes a value of 0.17

which is not completely satisfying but which also does not contradict the ini-
tial hypothesis.



Here, we obtain

(@ o[l wonronp [Fovoron ][]

({ y+Ux,+vx.,§LE +¢J g)%+u',, y+¢']¢~,,s>§
+i< y+Un,+¢ux][ VoL Uy e
U, +

+< y+ x+¢,,>[_ " 2+U"'1¢3-y+¢"’z{l>

g
(@A s vew vl (v rvu+ o]

[(E' +U’1=J+¢:l[ y+U1¢z+¢w:l>
e+, 4+(.g.> ]

AR v o @ vod]

-+

l

which can be simplified (terms between %? )e

. U s
According to our convention, the terms -E_ y + U are principal terms.

Those in ¥ are small and of the first order. We will retain all terms up to the
second order inclusive, by assuming ¢ to be of the first order and all deriva-
tives with respect to x of the second order. This will eliminate the products

7

U ! .
in Vg, W;ﬂzlx and ¢§§11x' (-E_) s U{x <7§;> , etc. which are at least of the
X X
third order.

This first yields

(90 U@Ll (] E e
(R (o Iy

'IT e
=y [ _E_ -lé + U(ullz‘. y +2(T>x,+ q‘llllx4+2 q‘"”x‘yf + 4,/1!1"4]-

]




On suppressing the products of derivatives in x formed with themselves /10
and with the quantity &, we obtain

[(%) y+U + ¢'.,] [w: + ¢ (% + (% R -"]
@) §+un]ve

L
=y [q‘uux‘ +2 \ll”"z'uﬂ + q‘uu " (%) I + Uuuxz“ y+ 2 ___)tz]

which is the equation of definition of the function V.

3. Minor Role of Viscosity in the Actual Boundary Layer; Reduced Form of the
Fundamental Equation

v N
The kinematic viscosity v is such that T is always very small*
tot *

i}
(with Uiot being the first bracket [<—E—) y+ U + W;])-

It is logical to assign to this viscosity the same infinitesimal order as
that of the derivatives with respect to x, namely the second order.

On the right-hand side, the term vV e ¢ZZ is the principal term and

tot
also comes out as being of the third order, so that it can be neglected for

g . U < ~U1) A the left-h ; 11 hi £ th
* Uias -—g— ’ L2 on the eft-hand side, a of which are of the ’

second order.

Thus, at low viscosity, i.e. for relatively high Reynolds numbers (which
will be the case in the usual problems), the form of the fundamental equation
derived from the Navier equations is such that, at x = const (i.e., in each seg-
ment x), the solution expressed in y will not depend at all -~ or at most very
little - on the viscosity.

This observation is valid only in the actual boundary layer where Uio: is
of the same order of magnitude as Up(Uy < Uior < Us).

This statement 1s no longer valid in the sublayer where, close to the wall,
Utot = O, This is the reason for the fact that neglecting of the terms in v, at
the present state of the problem, will not eliminate the influence of the vis-

* With respect to U1 2 0.45 Uy which fixes the order of magnltude to be retained
to the first order for transition Reynolds numbers R, of 10° to 10° s the term

——Y  is below 2 ¥ 107 to 0.6 x 1072,
Utotr &



cosity in the overall problem.

Thus, in the actual boundary layer, the equation defining § is reduced to
u\ 2 U\
Uyt A Pes - (‘g)x + %‘ . ('g)x’ +y U122 0.

3.1 Useful Form of the Fauation of Definition of the Complementary /11
Stream Function

The term ¥(x, y) can also be resolved into a sum of products of functions
@, of x and y and f, of x alone, i.e., we can put

v=2¢n

with ¥, = @p(x, 7) * fa(x), where ¥, is small and of the first order while the
number n of functions is assumed as finite.

Let us consider the quantities f, as being small (and f{x as very small),

with the @, being of the principal order, @Ly being principal and @/ being
very small®., Since we have to retain only terms up to the second order in the

equation in ¥, we will have
Ve=@s [+o fze:[a o= @z f +2?Ix/'x + ¢/ x20 /"
Vo= 9"z + 30 /2 43¢/ + 0 [Tz 0 [x,

L

Yy=9v/ ¢y = 9"y f, Y= @""yao f

and "z = "y f + @i ['x 2 9" ['a

The fundamental equation is written as

Dle/ert o'l + () +4- () +yum =0

This equation, which is of the second order in ¢(y), has the following
general solution, with c, @, B, Y, 91, vz being constants with respect to y:

* It will be shown later that ¢, cannot be considered as absolutely independent
U4
CP 4
of x since it must satisfy (—7%—-> = ¢°n where ¢, =T 1?—. This yields
.n

which is definitely of the infinitesimal second order, like §7.

10




? =9, Q?‘U + @ CT?‘U +a+By -ty 0 imaginary operator).
Hence,
¢ =—70 (o ehew 9s €0) + 2.

At each point x, the solution is such that (with @, B, Y being functions
of x

D= 's + /") (@1 6 + g e%0) + [Ter(a + By + 1) + 27 [

B ) |

3.2 Solution — Complementary Velocity Components [12

To satisfy this relation, it is necessary that the terms containing y in
the various irreducible forms will be separately zero, i.e.”,

. Se -Zec
1) Terms in p1e°°Y + @pe %7

[T— [z =0, whence [=[e=*4fiee=4[

(where f1, fz, fo are constants).

This solution in f is valid only if c; = O. We will demonstrate that, in
reality, ci; is small but not absolutely zero.

The above form will be a solution only in a relatively narrow domain A,
such that As = ci/A will be small with respect to c(x).

This leads to, integrating the function f with respect to x, term by term,
and thus to retain fi, fz, fz at their interior as constants that vary slowly
from step to stepe.

2) Terms independent of y:

Shafe 2y /) +(%—);=0.

The solution has the form

Sirsled +2qi+(F), =0 with  fe=clher—fe),

* To each value n, values cny Pins Pens fins etce. are associated. Except where
necessary, we will omit the subscript n.

1



3) Terms in y:

Uga+ D)1/ B} =0,

L) Terms in y=:

Similarly,

S fapl + U =0.

=7 frd w
In front of (_H;) and (—iL- let us introduce coefficeents A, invariant /13
3

X
with respect to x such as23l. = 1, so0 as to permit substituting the two pre~

ceding relations contalnlng the slgnll/by 2n relations where this sign is no
longer present. These are

[’z (@ ¢ +27) +x<g) —0,

et p (D -

and ,
ci/;ﬁ =—XUMII,-

Multiplying the first by ~c?®y, the second by @c® + 2y, and adding, we ob-
tain

oo @] e ran(§Lnn

whence

12




With

o
e B

1 €% —fyec=

it follows that

__1 A gy 1 /T
r=Ta /,ew—/,w[(g),_cz("a‘),._]'
These relations can also be written in the form

A
Bfz= —BU"I:‘

rer=—ga(P  ere=—3[@) -5

x*

—_— 7 -— U

. U U
They show that f; ¢ Y and fy * @ are small like (—é—> and <—§—->
3
X
From the first equations, at the interior of a step of an integration by
parts (with Y and ¢ being constants), we derive

.

VRN JE W8

which can be written as

Similarly,
Bl=—5U"te

(Since the integral relation is satisfied at the origin of the step, there
is no need to introduce a complementary constant of integration.)

The expreésions to be used with respect to the complementary velocity com-
ponents thus will be, in each segment x,
u(y) = 2(9'"/)"= 2(;/13“"*‘/:3'“ +/°£[:c(<ple?"‘"—?,e'3'll) +8+27yn
n n
[with fo = (f, = + fy e 4 f)u].
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ol =— X, (/I =— D (lc(e=r—foc0) | (96 + g ) + By + a + ¥y

n

L. Study of the Boundary Conditions

For the problem in y, these conditions must be expressed at the borders of
the actual boundary layer, with the segment x considered as being arbitrary.

It is first necessary that u = 0, for y = 0O (lower border with the sub-
layer). From this, it follows that .

r— =0 or =93 = Qo
whence

u()y= Y ({he=+fie=+ [ [—2qcsincy + 8 +2yyDa

n

and

u@=NUhe+he=+fo{[~2gcsinct + 8+ 2y &)

The term u(E) must be zero if one takes into consideration that the thick-
ness of the actual boundary layer is well defined by E. A priori, we know noth-
ing in this respect and therefore must assume that u(E) is very small but not
necessarily zero. Since Bf, Yf are very small [since they are proportional to

T
<_2;> , and Uq;s which are assumed as very small], then also f sin c§ is very

X

small. It would have to be even absolutely zero if, in the fundamental equation
- - 7
in ¥, the terms in Iq;3<—g;> and (—g;) were neglected. In that case, Y as
%3 x

well as B would be negligible and, to obtain u(§) = 0, it would be necessary

that sin cp€ = 0, 1.4y ¢y = —gﬂ—.

Let us thus pose this condition and let us return to the expression con- /15
e !

' U w U .
ta:Ln:Lng <-—g—> and <—g'—> s in short U:I(Ixs .

X
x3

L.l Residual Component u at the Upper Boundary
For y = €, the residual component of u, namely Mu(E), will be

A Uy M ovorre
du(@)= E(/nzYn'E‘*‘Bll):“‘}:nanaaa(f) "‘E'nana‘-au 1w

x2
n n

14




|||ii

such that u = O for y = § + 8§ where 88 will be given by*

A/ OV y
by ((</ Ot g €9 o) =2 0,4 = D 38— ()& —F U = 0
[since sin c,(E + 6E) = sin n™ * cos 88 * cos nT » sin cx88 = (<1)° * c,8E],

A second boundary condition is the contimuous connectivity between the
field U interior to the boundary layer and the exterior field Uy, at the level
y = E + 8% where u vanishes. Here, we obtain

d Ulot Tj 3 " . ) .
=T 2 s @0+ fan 9% =+ fo) [ 2 900 6 (— 1" + 27a] =0

since cos cg(E + 8E) = cos nT * cos c,08 = sin nm ¢ sin ¢,88 = (~1)". From
this, we obtain the condition

5 (s =) -~ %

This can be resolved into other n such as

=20t (= 1 — 2 (L) =—sa-

From this, it follows that

— . _1 E M (T 1 U
&1 2%"/"—0333" a‘E(TE‘)ﬁ%%?:“"""{'
Tt remains to see what happens to Vios (0) and to Vit (§). /16

Thus,
Vet o (TY Gy N (o et o o)
tot(y)— E x‘ D) it Y P Cn [y, €™ 2n

n

2
* We can thus find -§—§~ = - ﬁxz nE i = which consequently will be very
m2n
1 2ixe (L)' :
SH2 e g /_, but, within the scope of the approximations made, will be a

finite quantity.
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X [2 99, €05 n i + &n + Bn ¥ + Yn JP]
v Cn ([5, €0 —[;, €n7)

-—(g). 5- 0 BTN Ay Ay
x [‘“c,.”" (o g— (P cosen ]
+ SENE L@ -E) v —vmad]

(referring to the expressions for Bfz, Yfy and of/ given above).
Iny =0, i.e., at the interface with the sublayer ¢, we principally will

have

5 Clfient—f0%%) (g, T
Viot (0) 22— “,T" . /ln €% +/an e n® /on 1 c_::. -E‘ e }.

Similarly, at the upper border y = § + 8§, we have

U ! B Cn (f n ec"x_/ n e—c"x) n U
vlot (E + 85)%'—(_&'):“—1} 2 /’"eC:z +f2ne_:"x +‘ /Ont%.—zl}-

Tt is definitely necessary that these quantities are very small (but noth-
ing stipulates that they be ZEero) .

It results from this that f = 0, i.e., that in the integration by parts
with respect to x = Ax, it is necessary to put f1, = fz ;. It also follows from
this that fa(x) will develop very slowly with x (since the linear term in Ax

vanishes in the main).

5. Form of the Solutions Relative to y

Tt is convenient to write

1
— 200, /n(@ =5 ®a(z) awd On=KniO

Making use of the expression found previously for 2o f, we obtain

n=—[on =2 () 1S e - Do e D, -y

16



and ﬂ-l

o=a[fn i@ Jangp-att

'rl' —
since ¢y = -g—-, U= Usg = Uie
Finally,
T
—}_,(—1)nn<pn =—0, Z(—l)nnK,.==—
taking :43 W, = 1 into consideration.
Then, ¢, is written as
Up—TU
O, ===  uith A=— D (=D nKn

n

In addition, we will putZD n K = B, which are quantities to be used later
in the text. These will be the constants of the problem’, yielding

U , T\ 1
Um=—&-y +U1+®12n1{nsmcny—y<—{)zz .—_-U' >_‘ .
n n

ci

5.1 Useful Forms of the Velocity Components

We wish to express that the "turbulent" state follows the laminar state to
which it is connected in a continuous manner; let xj; be the connectivity segment.

Let the field U be the laminar Blasius field; it is necessary to write that
this simultaneously represents the initial "turbulent" field. The n coef-
ficients 2.(xy) = %, of the Fourier expansion included in Uso+ will result from
this condition, since the Blasius field is known. DNevertheless, it is necessary
to define the limit €; forming the interface w1th the sublayer. According to
the definition of this sublayer, the gradient U’y stops being constant for the
coordinate Y. In the Blasius field, as indicated in Diagram I in Fig.1l6 (se
Sect.21.6), this corresponds to the following:

Uy = 0.66 U, gg 0.365,

such that

* Since the number of terms n is finite, 2 nK, will have some meaning (we will
demonstrate that four terms are sufficient)e

17



& -
-8'1= 0.635 =g,

e

5W)

Applying the preceding formulas, it is thus easy to calculate the quanti- /18

where 8; is the thickness of the laminar boundary layer (taking 8y

ties % and K.

[o]
It will be found that these coefficients K, are very small with respect to
1, while &, are very small with respect to ®,. This indicates that the quanti-
ties ®, will be very small with respect to ®; which itself is very close to
unity.

For x > xj, the above—established relations show that ¢ : (x) can be derived
from &,(x;) by

Uo“Ux EU_)
®n (z) = n (x)) U, — Uy
where the quantities K, remain constant. Thus, relative to Ts the configuration

of the fields U and V will be known as soon as the law Uy(x) is known [and e(x)].

Consequently, the forms to be retained are as follows™

/I"m = Cn (fln ec": - f2n e_;cnl)' E ﬁn fn = Ullzvz C‘ 1

(A 1 nw
EY"’"(I)%~<€>¢:E'E' n="¢;

n

W@ y) = Y, [On siti n ¥ +2¥n fa+ Y + Ba fu] 2 ) Da - sin ¢a Y
n n
du

by=z[cn¢ncoscny+27nfn]_ ¢n Pp+COSCh Y.
n

n

Finally,

v(x, y) =— Z }en (hi, ec"z—fz,. %) [2 9o, €OS Cn Y + & + B ¥ + Yn § |

n

* The terms in Y, are comnected with the concomitant Presence, in the funda-
"

mental equation in ¥ (see Sect.3. 2) s of the term in ( 3 ) s and, under the
SAU

boundary conditions y = &, of the very small terms in AU() and . These

. ¥y .
are negligible in the problem in y, but cannot be neglected in the problem in x.

18



. g « y2 \" 1 ,
= 2 3 2 9o, Cn ()1 € — fa, €77) | COS Cn Y + 2 q;:),.] —T2¢t” (f)zs__clf u ”1”52
n

or

vz, y) =

¢

- % :] [coscny —1] — 5 Zn (g)m c—!{‘, . U"xzsi.

[See Sect.,0.6, Diagram V in Fig.32, for the form of the fields U(Y) calculated
in this manner.]

Tt should be mentioned here that it has been rationally possible to de- [;2
vise a form of the stationary field U(y), in the direct vicinity of a plane
wall, quite analogous to that experimentally found for the turbulent boundary
layer (at moderate velocities). This result was obtained without having to in-
voke the viscosity effects; it was sufficient to write the continuity condition
and certain boundary conditions referring to the connectivity at the upper
border (potential flow Up) and lower border (sublayer € where the viscous ef-
fects are localized)e.

oﬁ the Actual Boundary Layer

Let us next calculate

Oy = A2 Viet 2 Uit lDUtot____ U 3“
tot == 2 dx Yy T 2 7 dy
Thus,
U
Qtot""—‘"‘ Cn‘bncoscny+2‘fﬂfﬂg .

. dQ
Later in the text, we will have to write the fundamental relation tot

= v e A%,y with the rotations at the base y = O of the actual boundary layer:

dQ 2Q 2 Q 1O 20
—d;ﬁ =3z ;:ot * Utot + 3 ;t Vi, A Quot =< ;}t ) Jm
where
3ot 1PVt PUtot}| ~ 1:Utet, P2Quet 1[7° Vtot 3% Upor
dx 2 2T T dyox =T 2y’ D x? 2 Tdyoat
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d Quot 17 Vtot_ﬂjtgt_] PQiot 172 Vit 2 Ugat
dy  2zdy R P Y IR XY Y =

Since the continuity condition is satisfied

d Vtot — ? Utot

YR 2
or
32 vtot___ . 32 U 8 Viot 3 Utog
d R 222y’ dyexz T aafay

we thus have

szlOt_ UI ®u U, " UI o [
bybx‘<—5 x+m=<f>z+¢”zx=<_g);Tq)"z/x
40\ N, \
= €>:—2_‘[/n,32<ponc,,cosc,,y——2y,,u.
n
Aty:

- =__\1 4 . 7 _ R UI 1)\ —‘U‘"

~(@).~aR)L-

3 Usot N u .
S E e = =" f = B 122 90, €3 sin ¢a 1.
oy Y <

Nu
Fory=0. 3—y—2‘= 0.

92 Uot [0A% B u U\~ U .
ATNCRE TR SO JA

. ¥ Ut U\ N TV A An
fory =0 aybx*"(f):a_%(—l')" o ().~ 2% (

WS

n
¥ Ut B u Y
_5_‘1]2‘& =W= yul/u‘_____ ’P””y‘f — 2_./" 6:12?0,. COS Cp Y.
n

* If the complementary term in Zf;xYn, representing the term of residual ve-
/4

L — \//
locity (with respect to Up) at the level y = § is neglected, then 12 (T)
eZ x

will vanish. This approximation will be investigated later in the text.

3
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b Utot___y

For y =0: Y

¢l On.

Finally, Ut = Ul' Viot =2 0.

6.1 General Equations of the Problem in x, in the Actual Boundary Layer

The fundamental equation at the base in question, multiplying each side of
the equation by -1, will be written as

1 U 32 Utot> 1[ (ba Utot) 3 Utot)
2 dy Iz 2 dydal QY /e

5[ (@) Sra(el] ==l -2 2ae] @

or

3

. ) Vtot . E 1 / ﬁ u
The terms in vV =———5— are neglected as well as those in —v - = \—E_
X n x4
and in -v 2/ ¢ 12 Ui’:‘L]. '
It should be noted that /21

-3 -3
Ec;,'(bn =EE—3n3(Dn =?B O,
n ) n

9 ks
—}n](—l)nc,,cb,, = —2’;(—1)"En O =FA O,

and, consequently,

>t
sy

N
Z‘C?, (Dn: w2,
n

It will be found that writing eq.(I) reduces to picking up the relation of
definition of the stream function ¥ (see Sect.3) at the base of the actual
boundary layer, retaining the principal terms in v. We will demonstrate below
that actually, and within the scope of the adopted schematization, a disconti-
nuity of the velocity gradient and of.the rotation generally exists. In that

case, the corresponding terms (even as a product with may remain locally

v
Uk
significant. Consequently, they must be retained in the analysis.

The next step is to expand eq.(I) for which the derivatives of —éL mst be

calculated, taking into consideration that the products of derivatives will be
of a negligible infinitesimal order:



(U ! U’: I_J Elz I_J 4 ﬁ"’xz 2I_J/x E’z fj E”.‘n‘ '}: U"::’ fj E”x‘
J-%-9E LTt )t

g 13 g C/xr E g2 E\ & g2 § E &
OV _ U Olw B T & (T 82
(=3T3 o g
_U: 6 EzE:z En Em-‘r-‘ U”’x’_g Em
g ()= A
Finally, we have U' = U' since U = Uy - Us. Consequently, the condition

(I) will be success:.vely written in the form

o[ L-r S nh(@e-0p)]

NALAPCTETE)
Ul[—‘U;lz“Uo_g—zUlE’ 27:22 n’( Hﬂi’—(Uo Ux) )]

=v [2; CA e Uy = ‘EE;’

i 7l — U,
z g )
U, u”,

! 14 x3
[E UO_Ux nz}m( "+EU0__.U ]
+

) B 1
=V[2(Ulzz U. U +€1‘5€ 7.K.g
. 1
Let us multiply by <5 whence [22
1
1 2\’ x Ez 11
Ex—i"ﬁ_azlﬁ PE anzE

= B 1 122 Ulz UIII
[2 A €+§ UO—UE Uo—~U,E+2r2}4n2 U,—0U, U

The terms containing products of the derivatives with respect to x and of

T (terms between gz ) can be eliminated, finally yielding
1

[ V1 ]
1 3 , wm (Ta)
ETG, =0, LV T ¥

which will be the form to be used below.
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6.2 Numerical Determinations
At the end of Part I¥, we will give a numerical determination of the coef-

ficients ¢,, and of the quantities B, A, —%— for a connectivity at the laminar

Blasius stage in an arbitrary segment xj.
Let us state from now on that, for Uy, = 0.65 Uo, the following applies:

L 0y, = -+ 0.0035,

Uow,, =0.112, Uo =001, o
1 1 1. .
ﬁo(p"':ﬁod)a’.go’ Ud)s_——OOOO

1
A = 0.900, B = 1.415, %—_— 1.57, 21 32— = 0.075.

However, whereas the determination of A is accurate, that of B is less pre-
¢,, for n of a

cise. Minor uncertainties relative to the coefficients 5
o

higher order, have a considerable influence on this factor (1et us recall that

B . . . .
=%f n ~§——). Thus, —— is determined with a certain margin of indeterminacy.
1

For Uy » X = 0,45 Ug, a value to which we must refer here, we obtain

1 1 1 1
T, ®; =2 0.176, T, 9, = 0.0207, T, ®, = 0.006, T, ®, =—0.001,

with —%— remaining unchanged.

* See Section 21.6 below.
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CHAPTER II /23

BOUNDARY SUBLAYER

7. Structure

It is now necessary to determine the structural scheme on which the sub-
layer depends which, as should be recalled here, is the zone of very slight
thickness € comprised between the wall of the plate and the lower border of the

actual boundary layer, where the ve-
locity is U; (Fig.2).
UO

y U The boundary conditions, referring
to this sublayer, will thus be as fol-
lows:

on the wall:

U Utot = 0, Vtot = 0;

tan-1 &

' Vter ! at the border €:

U, Utot = Ub Viot =2 0.

~ S P The simplest scheme to which we
€ 63i Yira - b can refer here is that of a linear dis-
fc/z Wall X tribution (in y) of Uiot, from zero at
the wall to U; at the border line. (4
Fig.2 theoretical justification of this law
will be given in Appendix IV.)

Of course, this will be only a tentative scheme, i.e., a procedure for in-
troducing a fictitious sublayer equivalent to the real sublayer into the problem,
provided that one can prove that this is not physically absurd, and explicitly /2L
writing that — at least on the average — the fundamental relations are satisfied.

Since, for Y comprised between zero and e,
Y Ut U
Utot = . U, Vit & 0, 3 \f = ——c—l const.

* The continuity condition, as before, yields

. . '
dViot (‘—Ji> Y, Viet = —‘L (9">
dy € /x 2 x

4

U
which remains very low for the double reason of € being small and (—EE—> being
smgll, x
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U
The rotation is w; = - —%— . z which is also constant (relative to Y).
. oU 3
Thus, a discontinuity of B;:t and of w; on traversing the boundary U,

will generally exist, except when € is such that

U .
-s—1=2[<bncncoscny——2Yn/n]-
n

This will be the particular case of the segment x; of connectivity between
laminar and turbulent flow, i.e., the case of the last segment where the flow
ceases being of the Blasius type and is replaced by the "turbulent" type de-
fined by the equations investigated in the previous Chapter™

From this, we derive the initial values of Uy = Uiy, of € = €y, and of § =
= £, as soon as - since x; is assumed as given -~ the value 6, and the field
UtotJ(XJ, Y) are known from the Blasius theory.

In the general case, the presence of a rotation discontinuity w; at the

boundary Uy indicates the presence of particles rolling along the wall and
undergoing intense rotations in its direct vicinity.

8. Discussion of the Validity of the Rotation Scheme

The first question raised in this respect is whether this rotation discon-
tinuity along a boundary U represents a reasonable physical image.

Let us assume a line of particles in rotation, moving at uniform velocity
along a wall, with their viscous dissipation at each instant being compensated
by the creation of new rotations for maintaining - at each point and at each in-

dw
stant — the derivative “‘ngfgz‘ constant.

Thus, at a point I(x = 0, y) fixed with respect to the wall and at a short
distance from this wall, we will attempt to define the value of the rotation,
diffused (by dissipation) by the series of vortical elements in contact with
the wall.

8.1 Rotation Diffused at a Fixed Point in Space, by a Moving Vortex [25

Let us first consider a particle that entered into rotation in xp at the

* Tn this particular case, the velocity field U which is a Blasius field satis—
fies, by elimination of the pressure between the Navier equations, the above-
investigated equations; thus, the Blasius field is a particular case of a more
general, although still approximate, solution of the Navier equations subject to
approximations already less limitative than those of Blasius.

25
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time zero, with an intensity wo(0Q) corresponding to a circulation Yo.

This particle arrives at x at the time t, where x = x = U(t - to)e At
this instant, according to studies by Prandtl (Ref.1l) on the dissipation of a
vortical element, the particle in-
duces a rotation (Fig.3) by diffusion

in 100, y):
Al
/ re
/ A T
r,// , my(x,t):t_oloe 4vil—1,)
1 h
U 44// where
- Q) (&1 a 3
" = (— o+ g
Xo X
Its intensity of rotation in x,
Fig.3 at the instant t, is as follows:

Ay AU
m0(0=l_lo =x_xon

where the subscript O of @ indicates that rotations of the particles of the line
itself are involved, i.e., rotations such as r = O.

It should be recalled here that Ay is linked to the circulation Yo by the
following statement, resulting from the definition of the latter:

r _ re
y({) = 4718()&) rdr=8wvA, (1 —e 4v(t——:°)>_

As r— @ or t = te, it also follows that v(t) - 81V Ap such that Yo = 8MVAg .

As soon as Wp (t), starting from x, executes the step 0x such as 8x = Udt,
this intensity, by dissipation, undergoes the following variation of rotation:

—A,U
80)0(21) =m8x.

So as to have the rotation wo retain its initial value, it is necessary /26

that a compensatory rotation of the loss dwe is generated on the same particle
during its transit 8x, namely

84,.U

820)0 (x) = sz’

such that

26



whence

A
Here, 8Ao appears as infinitely small (of the second order in 8x) with respect
to Aobx of Bhe first order.

In I(0, y), located outside the line, the variation in rotation induced by
diffusion of w \} durlng its transit 6x, will then have been

AU 8 — )2 S
Sm,(x)+sam"(x)_x_xo [g x;xxo_ax<( :)_-:;J )8 2 P

s ~L.ZEw
et

o AU o [31 U 2zG—m)— @ty 412"]
(x —z5)° Ty z—x, ’

U, x2+x2
. —E Oy x2+y2 . . o

since the term in e can be neglected ———7;———-be1ng infinitely
X

large).

The rotation induced in I by the element we, from its origin in xe until
the instant of its reaching x, will have the following expression:

. = U 233(21-—2:)-{— 22 - gy _1.1';_‘1’
QU(x)—'._AoUSz=x, iy’ (:z:o_x)(z i) ]e oEE, dx
— AU _%i;_i_::‘
X — 2,

8.2 Rotations Diffused by a Vortex line in Dissipation

Let us now combine a permanent line of elements similar to those considered
above and all originating in xp, with the density of rotation being uniform so
that also the density of the quantities Ap generating these elements at the
origin xo will be uniform (for this, we will denote it by A° v)'

95'29 =U A,°-'v= const.

The intensity of rotation induced in I is expressed as follows: /27



u x4yt vy 14-x?
™ — =t dz x v, t
2o, 0,2) = AIO:, US‘ e Wa-x UM Al US e W xin d % ,
=X, Ti— I ° T Jxi=0 X{ — %o

X1
when putting #y = —.

It is necessary to assume #g and # to be very large, i.e., #po = ~,
- + o gince y is assumed as very small, such that we can put #e = —I”ol: n o=
+|%o| and cause |%o| to tend to infinity. Let us also put # = R ¢ 2z which is
a variable complex*: The integral in 2z is

=

—Yy 1+z®
K ¢ W itha ,__ @2
vAA'

z 4+ {x%"

It is obvious that —lnol is the only (essential) singular point of the
function under the integral sign.

Thus, this function is regular along the contour formed by AA’ and the
half-circle erected on AA', except at
A which is surrounded by a small

8 quarter-circle of radius 6r (Fig.h).

z Let us form

_ty 1+
____z#‘__ 4y 24 {x,l
A, e 'y z + [ %]

A —_

A
2 0 As |z| - o like Inol, the half-~circle
'l‘ol 'Ixol ABA’ increases indefinitely, and this
quantity tends to zero since the ex-

Fig./, v
. -y 7?
ponent tends to zero like e .

Thus, except for the small quarter circle in A of radius dr, the integral
- which %s gzero over the entire contour and zero over the half-circle — is gzero
on A 1A2A .

Let us further investigate the small-quarter circle in A. We can write
the integral as follows:

w1 _uy 2
S e W oEEbel TR dz
g Z + [ %]

* In what follows, R is used for Re (Reynolds number), as in original.

28



and put z = -|#o] + { from which it follows that dz = d§; finally, /28

2o x| = =23r.ew
This will yield

vy 1 vy (G—bal)

Q ~w'E oot di
[ L 4 [l
Je [4

As |n°| - o, it is always possible to select luol sufficiently large so
that, no matter what 0r might be, the modulus of

Wl vy Gl
e 4vt.e 4v ;'*]

will be smaller than an arbitrary value €. Then,

Since

L- TT .
P I < el - tends to zero as € tends to zero. The integral on the quarter
[

circle thus will also be zero as soon as l”o‘ - oo,

8.3 Application to the Sublayer Case

J

| %ol
fused in y can be neglected for the rotation of constant density existing in the
vortex line in whose neighborhood the point I is located.

Consequently, provided that is sufficiently small, the rotation dif-

Thus, a rapid evolution of the density of rotation is possible in the
neighborhood of a vortex sheet, and the discontinuity of w(y) which our particu~
lar scheme incorporates on crossing the border line U; is by no means abnormal.

However, it is also obvious that, if the layer of uniform rotation density
does not extend far upstream or far downstream of the point I under considera-
tion, the vortical diffusion will become noticeable.

This would explain that, at increasing vortical density, i.e., whenever new
rotations become superposed to the layer of uniform density, everything happens
as though this layer would incorporate new particles which it would cause to ro-
tate.
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In the highly approximate concept used here, in which all variations of
the quantities with x are assumed as very slow, this phenomenon can be neglected.

9. Constancy of the Gradient Uy

Another question is raised in this respect, namely that of defining whether
the Navier-Stokes equations ~ for a row of particles in rotation - are compatible

= const in the thickness of the particle line,

with a distribution U such as

Let us resume the reasoning of the preceding pages, applying them to a
calculation of the induced velocities.

A rotation generated at the time to willl induce, at the time t and at a
distance r from the nucleus, a tangential induced velocity

L &
aU (1’ N = 8;‘; f‘o [1 —e W t—lo]

(see Prandtl, loc. cit.) where (t - to)U = x ~ xo.

For a path 8x = U « &t, the following induced velocity variation appears:

2
_ STCVAO I-ZU _4"(’3,)
3U =——577 '[4\,(1;__%)33 |8

Simultaneously, we have 8A¢ to compensate the loss of diffused rotation
such that

— 0
A =rhw b,

whence

ru
aﬂLL:L;‘;%b—e 4““]=—-§°_.8_’2.3z2

r2u

-

/ 8
(e 4V 0 being zero). Here,8°U is of the second order infinitesimal in 6x. This

leaves only U,

Due to the single vortex Wg, it follows that

. 8mvA,(= rrU —r!‘h(+ 8nvA v
U = — R Sz:x,‘i\f(x-—xo)’e x Io)dz=__2n_r° l—e W@ |
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The totality of rotations we, all originating in xp at uniform density,
will generate, with r = Jx3 + 2

‘lttot =3, U =

= _U ey
8 s Alo 1 —_ 4y xi—Xo
Xs

= iz
27 Jpme Vot ap

According to the coordinates x and y, the velocity components u and v are /30
obtained by projection of U (Fig.5).

At x =0 and sinceu=4* —3 ——_ v =1 - X1

2 : 2
xity «/m*yz

s we will have

v U yiay

UWor =2 u =4v A’O%S

T

1—e . y
omze VI P Va4

dxi ’

X v uttry

01t=20=4VA'° .
° MS,‘_,, Vap +y2 Val + ¢

Ty

dx;.

Let us put n; = ;1 so that an integration interval is defined such that

X = =xp and are very smgll, i.e., that !xo! is large (for example, + 100).

Graphical integration will then be easy, yielding

u

Yo U 14%y
u Utot = 4 v A’ 1—e ™ "l"“d
v b4 o Oxg v x F 1 Xi»
N 4 e __111_1-{-;0,
i o 1— 4V Xi—x,
o vtot=4VA’0- xdx
Flgts ° —xo Xll + 1 t t

The accompanying table and diagram show, at different values of Z'y =X,
Utot v

the evolution of — = Z (Fig.6).
x0
This diagram indicates that —)Z(- is constant in the domain 0 < X < 5. This
L]}
quantity, to within a constant factor ——% s measures the gradient ——5331—.
Oxq J

(The superposition of several lines of elements in rotation with g§? =0,
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U
can only thicken the domain with constant gradient -—gégi—.>

Tt should be noted here that (Utos), = (Utot), = const represents the /31
fact that the material elements located on the radius vector from O to y are
subject to the same rotation and belong to a solid entity in rolling motion;
this defines the dimension of what one might call the "particle". According to
the preceding result, where (Uioy ), = (utot); = const for 0 < X < 5, everything

LV \

proceeds as though the dimension of the particle were y<5 T = .Tr.;p,
XaUyléy o 1 2 5 10 20 For U = 29 m/sec, we have
Z:U, VivAy, | 0 009 019° 046° 080° 113 _
(i — Y<10-10-5MKS (10 ), in air.
Z’ | /7| | A h
7 /
v yd 1 For U = 87 m/sec, we have
s ) 7<33:10-MKS (3.3 ), in air.
04 | Although they are rather small,
02 S these dimensions are large with re-
’ l 1 __J spect to the radius of a molecular
0 p” volume (of the order of 107° MKS) and
10 X are large even with respect to the
Fig.b mean free path (of the order of 1077 ).

10. Fundamental Relation in the Sublayer

Since the scheme adopted for the sublayer cannot be contradicted from the
viewpoint of physical possibilities, since here the sublayer is considered in
its entity, the drive velocity of the particles is the mean velocity

dz _ U, dY
2' - _2" and o-al— =4 O’
. Vv
no matter what x might be. Thus, = = 0.
s s - 1 , oU _ 1 ., U dwy
The rotation is W; -5 —5? - -y where 3y O. /32

Applying the fundamental relation to the rotations, we obtain (see Sect.2.1)

i.e.,

7 (yél)x =V (%‘)z (11)
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which is the sought relation.

It should be noted that this relation is approximate, because of the very
nature of the scheme used here, so that its reliability is not absolute.

33
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CHAPTER IIT 33

THE PROBLEM RELATIVE TO THE TANGENTIAL COORDINATE x

11, Third Relation for Moment of Momentum Losses

In the preceding Chapters, we demonstrated that the problem, in each seg-
ment x, was determined with respect to y as soon as Ul(x), §(x), G(X) were
given.

Now it is necessary to calculate these three functions of x, which means
that we require three distinct relations.

Two of these are already known; they are the fundamental relations of forma-
tion of rotations [egs.(I) and (II)], of which one [eq.(I)] is written at the
base of the actual boundary layer and the other [eq.(II)] at the interior of the
sublayer, for characterizing the totality of its component.

Writing these equations simultaneously i1s necessary to express that, de-
spite the discontinuities of the velocity gradient U; and of the rotation which
is included in our scheme, compatibility of the two flows and compatibility of
these flows with the general complete (Navier) equations will exist on travers-
ing the border line Ui between the layers*.

Because of this fact, the relations in question are quite distinct and con~
stitute two functional conditions.

The third relation is classically derived from considerations of impulse
in space, by evaluating the momentum losses existing in each segment x; on de—
riving the obtained expressions with respect to x, we will -~ by definition ~ ob-
tain a first evaluation of the shearing force To along the wall; it will be suf-
ficient to identify this with the general expression of local shear Te =

JU.
= u[—-—iii—] s derived from a consideration of the configuration of the velocity
o

oy
. P . P aU'c.o‘t. _ Ul
field, for obtaining the third sought condition. Here, | ——— | = and
o= pv, oy o B
11.1 Expressions for the Loss of Moment of Momentum /3!

Using the tangential velocity spectra determined previously, let us calcu-
late the losses of moment of momentum

o
t=g+ae=0(" Uin U Ui d¥

i

* Because of the discontinuity of U; at the border line, the terms in Yysbecome

locally significant.
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in each segment x.

U
In the sublayer, we have Uioy = —— Y so that

e U U U
qe=Pgo"é‘l‘Y(Uo__€—1>dY—‘PUg Ul 2[1—“

In the actual bou.ndary layer,

Utot = U, 4+ J+Z[¢‘n5man +2¥nfayl =

E y+ \ Q,sinc, y
whence

T s 3 U\ g3 U y? )8
[ o | (@ Lot

243 = 13 —
d n'—y) G ne 4 nvy>
+}3¢,.\ -—2U,)smnEy-————_E_——-——22CD,,\T :E-l—]ysin_a’-_y )
n n- n
0 E Y
g

0

i 3 ~
d<n—y> d(néy)
‘& d : = ] 3 - 3
—EE(D,.O,, smn—E-y-smp—E‘y-——w——-E@* — 2
a p
Let us put 6 = —g— Te

When y varies from O to &, also © will vary from O to T, such that

. 0= ® \ e
Sosmn—a-yd<nfy>—nxosmne-de__ n

‘tamo LT = \N_ ,& - 2[ cosnO
So—{ysmnay d(nay> nd\ 0sinn0+d0 =—n?{0———

cosnQ|m 2 i1f n is odd,
n 0_

0 if n is even;

a

©
+nx cosn0do;
0 0

=—n¥n.(—1)n,

., 0= . ® T L .
Sosxnnzy-sxnpgy-d@zy)=ngosmn0-smp0-d0

23:[cos(n +p)0—cos(n-—p)0]d0 =0
X;sim(n%y)-d(n%y)=%g’;(1—cos2n0)d0 =nz

| &
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Then,- the loss of moment of momentum gg becomes

[ (2 .
teste| U 20y (T Sruerafud
1 T 2 , nw 1
-1-2(U0—2U)%J2p<21--n—'_: ¥ ( :)%Ji)(—(—l)"-nn) ? o2 —2-2—7-_]
g g g

i.e.,
1 \' Qa1

’ 1 U 1 U U 2 U
=, U?. _<1 _1)__ _< ___1> Uy _( _ x)
qz P Yo E[z +U° (3 1 T, -+ . +7‘: 1 2 . Uo-—12n =1

Since (ge + qE) mist be derived with respect to x, the following will ap-

pear:

0G94, 3G 1y _ ,[1 U, 2y, Ul 4U,\
e A 20 (1—30h) & + o 5(1—30)
1.U 2
& PU;-Q.ﬁf(l -—'5.3—;>e"z (since € is small).
Similarly,
dqs 24 2%
“—‘x“"'.=b ‘E’x'*'bY‘ U"’
We will put
d Qe ;
b—g—=pU;.¥€
with
it = l(l_}.&.) (1 __ < U1 y Uo¢m+x
=13 T, +2 ) FTESY
1 -
— Oy
2 U,
+;< tr)W—l)" = — 3‘2U*oAJ.
% _ &
35U, = U
and with
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2 "" 2n+1 =——Q
B=—z (_. ) AN DN
s\ p ST D

U U .
Thus, £ and B appear as functions of Ul and Ul alone since, as should be re-
o o

called here, the quantities ¢, are written in the form

Op =0, K,
Uy
. » U - T i
where K, are constants while &; = e (1.e., o $, = a————K;9—— .

11.2 Application to the Third Relation

The relation for derivatives of the losses of moment of momentum will thus
be

U,
*=P"T-5 (7 + q2)

-
— z.l ' € i U1 U'te Ul B'I 2 U

C}’=-—-——P ‘=2TJ';~U:';.
2 0
it follows that
2y U 1 . 2v (U 1 U, O
TTT G Y fe= Uo-'ﬁ—UT'cr*J' ()

Finally, the equation of derivatives of the losses of moment of momentum
will be written in the form

T, U,'CF )T, I

* Por the values of

U
U: and ¥, to be considered, we find £ > 0, 8 < 0.
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i.e., [37
ol 4 v (U \? 3}&>ka
o =2 42 —g(gt) (1—57 v
2v U U\ 1)U (I11a)
@ -——~—‘-<1— ’)-—f—-’—"—]
+]BE g
which will be the form to be used below.

12. Study of the Sublayer Relation and Functional Hypotheses

To solve the problem with respect to the variable x, it is now necessary
to solve the system of three simultaneous nonlinear differential equations (1),
(1), (III) [or, which comes to the same, resolve the system (Ia), (II), and
(ITIa) by introducing the auxiliary function C} over eq.(IV)].

The constants of integration must be fixed by taking the initial conditions
into consideration, i.e., conditions fixed by the connectivity in x; (assumed as
given) with the laminar Blasius state.

Unfortunately, it is impossible to directly solve the system of the three
equations in question, since we do not know how to write the equation connect-
ing € with Uy (other than in a differential form).

This difficulty makes us attempt to solve eq.(II) of the sublayer separate-
%y, Yhile still producing a class of solutions compatible with eqs.(I) and
IT1).

This constitutes a detour in approaching our problem, but we will demon~
strate that this detour nevertheless will yield information on the mechanism of
the phenomena.

Since eq.(II) contains € and U; as unknown functions, it is necessary - if
this function is considered separately — to conceive a scheme of formation of
the sublayer which is realized by the introduction of a second relation between
€ and Uy, sufficiently simple for permitting a calculation of eq.(II).

Then, the solutions €, Uy obtained in this manner must be compared with
the conditions (I) and (III), for defining the validity of the scheme under con-
sideration.

12.1 Schemes for Causing Rotation of the Sublayer FElements

Actually, we will examine several of such schemes:
First scheme. The sublayer involves the same fluid particles, meaning that

it constitutes a stream tube. Then, the relation between € and U; is especially
simple, being
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- ‘U'1 =const. h. or &= ""IL = hU;‘o

U;
The local friction coefficient reads /38
v U, v Ui
= T

C7=2—_O,—-. =2-,U—:.

© x|

It will be shown below that Uy is a necessarily descending function of x.
This scheme appears incompatible with what is known of the rapid increase in Gff
in the domain directly downstream of the segment of comnectivity x; with the
laminar state preceding the "turbulent" state.

Second scheme. Let us apply the Blasius hypothesis to the sublayer, i.e.,

let us assume invariance of the pressure in the sublayer. Then, = 0.

Y

Since, the normal pressure 0y whose expression is
WV . . .
6y=—p-+2 EL—D % (n is the viscosity coefficient)

is invariant in the thickness of the sublayer, it follows that

doy _ 3dp RV
5Y =y T2eyyr =0
i.e 3.
C oo U . v
Then, the continuity condition % * *yai 0 yields
BV ®U Uy
YT T Y2 Y —<"c">z= ’

U
il.eo, —Ei- = const ° —%— relative to x, which means again that € = hU;.

Thus, the local coefficient of friction is expressed by

CI‘.' =—.2—v.}- = const.
1

U7

Here again we do not have an image permitting consideration of the phenomena
occurring in the zone directly downstream of the connectivity segment x;.

Third scheme. The preceding schemes have proved, with respect to the /39
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e U oe UL
evolutions U: and €, the existence of the laws romniaiialier et B = —_—
1
¢! UL
Let us see what happens in the general case ex =g 5 where § is an
1

available parameters

From this it follows that
Log e = Log Ui*t 4- const,

iee,,
¢ = hU;"Y,

where h is a constant satisfying the initial condition. Then, the velocity and
rotation gradients have the following expressions:

U,

<

I

1
rG%

-

U

.
‘H

s

e

iR

[
| ST

|

e/
e
Blax n|—
=
-

U'Le
T ROV

1

|
I

e/
8
b=yl

Let us write the equilibrium of a fluid element between the actions of
pressure, friction, and inertia. We obtain

2 aU »U
P —pu. Sz teesE

5z =
where
=By, Wo(BY.ya iUl Wy
Finally,
= (= )y ()
o). =i — e E = L U+ 0 5
8On the average, in the sublayer €, we thus have <since -%— } Y24y = e? s
< [wmy= 822) ’
o

gz fpo o s0 (]

LO



Consequently, { appears as characteristic of the evolution of pressure [LO
(and of rotationss in the sublayer. We will stipulate that this quantity is
characteristic of the mechanism of placing this sublayer in rotation.

OPn
ox

vations made with respect to the second scheme.

It should be noted that, for { - O, - 0, this agrees with the obser-

Use of the relation € = hU&'*'C for solving the condition (II) relative to
the sublayer takes nothing away from the generality of the study since, as is
necessary to do, this study is performed in steps: { (and h) will be quantities
derived step by step in such a manner as to satisfy the other relations (IT)
and (III) at each step and, at the origin of each of these, also the conditions
of connectivity with the preceding step. In fact, a simple change of variables,
facilitating the analysis, is involved here.

12.3 Evolution of the Friction Coefficient with the Mean Parameter {

It now is necessary, in the case in which the mechanism { of induction of
rotation in the sublayer varies from step Ax to step Ax, to define the evolu~
Uy
€

tions of thickness € of the sublayer and of the gradient in this layer.

Let §4 be the mechanism of the first step, with €; being the thickness of
the sublayer at the origin of this step:

s = Iy U:;H" vields [y =—Jﬁ_?i-
3

Along the step, h; and {,; are constant. Hence,

Ag = R (1 + Cl) U‘;';A U;,- = 5’7"(1 +4)a U‘i'

At the extremity of the step, we thus have
- 1
a=¢+Ag=nUI"= e,-[l +_T+;-QAU”]'
'

whence

AUy,
. L0+ 85

h = = g; — —e
i U{*" '(U1,+AU,,)”'<’

In the second step, the following appears:

Al



(1 + zl) Uzl:‘. A Uh
U}"i’:l ’

whence [Al

A, =h (1 +EUIAU, =35,

€2=51+A51=‘1[1 +( +c1)AUh_l =g (1+1 + cIAU11><1 + (1 4+ tl)AUI‘>

and so on.

The expression of €, at the n-th step reads

=L (1 + a + i)

whereITE denotes the product sign.

If the quantities AUy, are very small, the principal portion of the product
II will be written as

AU
{1 + \‘ (1 +%) ]
and, in the form of elementary steps,

= o1+ 0 o]

Taking the mean value of { into consideration, this value is removed from
under the integral sign so that we can write

- ei[l +(1 +()L0gﬁ%].

Simultaneously, the velocity gradient in the sublayer becomes

U
UL_ 0, Uy -
& U'
/ 1+(1+C)LogU—;
Since
“w-
C}==7§LX==%%.E?,
sUs 7
L2




T

we have

Cr = Ct,

1+(1+t)LogE‘;

which shows that § characterizes also the evolution of the local ‘coefficient of

friction.

13. Solutions Uy (x) at Different Values of §

L2

Let us now return to eq.(II) for rotations in the sublayer, at arbitrary C:

UL_
: TRUY

powy
-

This equation is written as

S (an) = (),
2 \hU3 ). = FU,):

4

Sin ( 1 ) = CU{" it follows that
1
hug hug*

By integration, we obtain

_l_ _l_._ 2 Uh
t_l'UE..l = - VUF const,
Let us put
Const;:-;. i
{—1 ¢

where % is the value of Ui that cancels Uy .

From this, we derive

o U5 1 1
=T =02y | 05 &)

i.e., again
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"o 1 .
Vi = + g —govae U U —asy,

which is a differential equation of the first order with separate variables
whose integral solution, from the origin conditions Uiy, x3, reads as follows:

Sm dUl _ T — .
uy Uy (U5 — @)~ T (T—=7) 2v &%

No matter whether { is an integer or a fraction, it is possible to calcu-
Uy

late .f in a simple manner. (For a fractional {, we will set
ula

1
—1)=
u= U(C )n'

whence [L3

- n n__4 2n
Ul= uC—i, U,lz=t—— l.uC—l -u’:, U:=uz—1.

The quantity n is selected such that is an integer. Decomposition of

—r
-1
the quantity under the integral sign will then become possible so that also the

integration can be carried out.)

The preceding form will be used for { > 1.

For -1 < { < 1, we will write

1 .
U = gy UL (U — g,
i.e.,
Su. dUl _ 1
uy U1 (0] — @08 = (T— o2y (@ — ;).

Finally, for § = 1 a singular solution is obtained, while the limiting
value of (U-;lfc - %Il—g) T’Ji—g— mist be sought as soon as § — 1 (since this
takes the form % for € = l).

Since

(UHe =—U{"*Log U,,

(@ = — Ut Log @,

Li



making use of a Taylor expansion of U%'g -al-c about £ = 1, it follows that

(U!% — Q=) = lim (U!"* — @), —1—‘1‘51im (Ui Log U; — @1-%, Log U)o,

Thus,
A S e T & N . U
lim (S =), ., = — lim (Log U, — Log )z = — Log o
Finally, N

1 U
U'l. = 2—-‘-' U: Log F.é- .

In all these cases, it is immediately obvious that the form of evolution /4L
of Uy(x) is that figured out above (Fig.7). The curve consists of three
branches. Only one does not contain
o for U;, which is the only one to
be taken into consideration. In

Y, this branch, Uj, is constantly nega-
/ tive while U; evolves by decreasing
/// @ between two asymptotes, o for x = ~»

e and zero for x = two,

u,.
\ 1 It will be noted that the

1
P e M presence of the factor in front
i P - v
/7 of x = x3, in view of the veryslow
value of its inverse (29 x 10° for
Fig.7 2v in the usual cases), indicates how

minimal must be the path x - x3

necessary for having Ui pass from U,
(which will be of the order of 0.65 Us) to values directly adjacent to the
asymptotic values®., This simply signifies that the initiations of rotation ana-
lyzed by eq.(II) rapidly reach their state of equilibrium and that viscosity ef-
fects of an entirely different order of magnitude are required for appreciably
decelerating this process.

1. Necessity of a Finite Lower Limit for the Decrease in U

Since U1, starting from U,;, which is the initial connectivity value between
the "stationary turbulent" state and the laminar state, rapidly approaches its
asymptotic limit, it will be found that Uj vanishes extremely rapidly: Thus,
eqs. (Ia) and (IIIa) assume the following reduced forms:

* An explanation for a much slower evolution will be given in the second part
(nonstationary study).
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1
g (o)

LA, n " = v B

Ex 27:2 Ezg_zlt\;—[j—l .K

LSAY A

o)t ) (1I10)

m
2
~o|ae, — (U2
Crac2| 4 82 5@ (-3

If Uy would tend to zero as indicated by the preceding solutions, it would
be necessary that at least € increase indefinitely, for values x - x; that are
still extremely small*,

This phenomenon might possibly be compatible with flows in the state of
separation but certainly cannot be compatible with normal flows. Thus, it is
necessary that U; find a finite lower limit for its decrease.

However, this would mean that eq.(II) cannot be reduced to the excessively
simplified form that we have used by considering, in the rotation, only the term
1 Uy
Wy = = =—— *
2 €
dimensional state. The normal velocity component V cannot be neglected when
the contraction €(x) is extremely abrupt.

o The functioning of the sublayer cannot be reduced to a one-

In that case, a term complementary to those taken into consideration is [Aﬁ
in existence. Let A(U1, x) be this term such that

with € retaining its preceding expression
e = fUI¢
(where h and { vary in principle from step to step).

This makes it necessary to return to the preceding expansions and to define
the conditions which A must satisfy so that U; will find a nonzero asymptotic

* A numerical calculation shows that, if Uy, is not infinitely close to the
l 3
1000 )

to ( 1§oo ) of a millimeter. In fact, it is impossible to furnish a similtane
ous explanation for the abrupt increase in § and C¢ in the zone x close to x;
except by assuming that U,y differs greatly from the asymptotic limit; according
to the configuration of the Blasius field and since the boundary of the sublayer
is located where Uy ceases being constant, a value Uy, of the order of 0.65 to
0.68 Up corresponds to this.

L6

asymptotic limit, this limit is practically reached for paths x - xy of (




lower limit X.

15. Solutions Ui(x) with Complementary Term* in the Sublayer Equation

Here, we thus have

and

1 ’
(0’[. = _.§ CU A'U. Ul ] 1

i (1o un,

NJI
s
ﬁﬁ

The fundamental equation of the sublayer

U

1,7
2 ol =vo'y

on multiplying by 2, becomes
U ’
?1 UI‘: [h_‘[_—%*_': -+ AIU-] =V ([Wc:;: + AIUI Ul‘a>.c'
or
Ul -5 + U, & ]—2\'([—(»-{4' ~lU' )
= _RU% 18w 1= KU} U |Vl
so that

¢ 1t
T— ¢ "OT +SU1'Av.de =2V<h—UC:7: +A'u,>U'1¢ - const.

So as to have a root X appear in the denominator of the term in U{x of /L6
the equation written by separating the variables, it is necessary, with

e FI T

or L=t 4

S [ p oy & hoo. N 11
h<1__0[1—u:_<]+——gm_ XU,-A.,,dU1 = 2"hU:(1 +(U: “A’u.)Uz,

* Another possibility was also investigated, in which € would not be able to de-
crease indefinitely (its minimal dimension could be of the order of the wall
roughnesses). It has been proved that such a consideration does not permit the
appearance of a lower nonzero limit for Uy and a decrease of the friction coef-
ficient at increasing x —~ xj. Therefore, we cannot expect to find here an ex—
planation for the encountered difficulty.
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that &
— lt:' ‘ . U
THFU a0 = g,

From this, it follows that

g [: X
Ay, = Flier| — 1 = .
LYY hU:” 1 + Ul — x] hU:‘C Ul'— x°
Hence,
! v dL)’1
SU“( (U __\)-i-constcg
and
SUX <Ay, + dU; = KTS (éul_ X)+const C,.

15.1 Integration of the Sublayer Equation with Complementary Term

Let us return to the fundamental equation which now becomes

U=t 1 U,
h(l_ C) —_122 +U1\_§SU Au,dU —2VhU Ul—:x
or
1 g x_::] I_‘.S ' - U'y,
I—C[U’ a +C Ul Au‘dU1—2v m-
We will treat (to recapitulate) the case { = 1 and the case { =
Case £ = 1:

== dy, / X 1 U,—X
A_h-SU:(U—X)" SUI'AU;dU1=‘h—')_(‘L0g 1U1 - const,

Let us calculate

when { —» 1, by putting

whence
) €L /et . AN /L
rom=os @ o= () ()

On expanding this in a Taylor series, we obtain

18



1@ =[O +54 O + g ©)

where

1@ =0 rO=—Log. /©=(Log o)

Thus,
/ (*:)

=IO + 155/ O = —Logy

when € = O,

Consequently, as § = 1, the equation is written in the form

Uy,
G0, — %"

& U, —
—Log G; - Log IUI X+constC1 =2v.
whence

U, 1
U, (U, —X) [Log (U, —X)—Log U +C;} ~ 2V

We will now put Ci = Log -—2[—_2_1—}-(- which, as above, will permit obtaining

Ui, » 0 as U1 = % in fact, we then have

. 1 U,— 2.
U, = 57 U, (U;—X) Log z‘«i—:x‘.

Calculation of the integral can be carried out by graphical means.

For A, we obtain

P ‘dU, dU, du, ) [ U,—X ]
A= [:—— IJ. j‘xa(\Ul_x 3 U, = U1+ LOU T, + constCy |,

TETS O

and

1 1 U,— X
w=—37 ‘ﬁ:—’“‘]——ﬂ G o TR g | ]

— X
2h[XLOt7 ]+C3.

Let us now investigate the case §{ = O.
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Case §& = 0.

In this case, A = O but

h, ¢ dU,
z:A—-)(\U1 U, —X) -~ const,
i.e-,
A U,—X
h r = Log ‘U‘ ~}..const

and A = O if the constant is zero.

Similarly,

1 *
C(\ w, U dU; = XSUd—LiIX +const = X Log (U, — X) - const.
i

The fundamental equation is then written as

!

(U — &) 4 X Log (U; — X) +-const=2v UU I”X
—

or

. Ullz
(U =X (U, =& F X Log (U, —=X) FeonsiT 2

.1_
V
We put
const = ——XLog (cx, _.X)
so that Uj. ~ O as soon as Uy — U:
) 1 — X
U, =§-;(U,——-X)[U,——c1 +XLogE‘T:>%]
and, finally,

U, _ U, Ui —X[a—-1, & — h
T, - v G, G, +U 80 =X

a form to which we will refer from now on. This expression yields

2w w,
x—xl—_UQS X0, X X
Uy -0, U U, U,—X_
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i

From this, U/ . and U+, is readily derived as a function of U{ and U;
? “Yixe k3 x x
(and of Uy alone, since Uj is defined in Ui):

” __U'IJZ Q r Ul_—x
Uy = 5 (2 U, —& +hL0gz.r_:_—x)
U, —X — X
== 14@ LU —& +}\L0gr' L2U -+ X LOQ—‘T_—X—'
and ) [ég
U'x,,; [% l_U — ¢ 4+ X Log r] \2 U, — & +X LO“ET—*%>)S

+ (U (.a U—& +X L"b%‘c—\‘) +2U;,—X) (U,—c\ 4+ X Log—tE—S}—)j

1!

[which will permit introducing the term Uixa = K(U,) into the calculations

X

relative to eq.(I)].

The form of evolution of Uy(x), with the complementary term A, is that
given below (1rrespect1ve of the value
of §); Fig.8.

i
_ 1‘2 In fact, as mentioned above, the
== — : length of the path x — xj required for
a decrease in U; from its initial value
to values extremely close to the asymp—

totic limit X, is so short that it is

\sz, of no importance for the numerical re-
— sult to go into details on the step-
X| —" by-step evolution phenomenon of {. In
practice, it would be possible to use
ol . _ the numerical solution furnished by
x; x the case { = 0 and to retain the exis~
tence of the other solutions only for
Fig.8 a more physical analysis of the phe-

nomena of initiation of rotation of the
particles in the sublayer.

In particular, it will be noted that these particles are directly dependent
Uo

on the viscosity factor

.

[We are giving here tabulated values of the calculation for two cases of

_1]

evolution of Uj(x) between Ui, = 0.66 Up and X = 0.45 Up for



= -
o 065 0.60 055 030 0475 045 1
U Z=S | 0 0616 1396 2476 3346 o [Caseq==0|

GEZE| o 0810 1778 3154 4250 o0 |Cesel=1

v

16. Determination of the Constant % /50

For x = - », ¥ represents the asymptotic value of U; (in all above-defined
cases, we were careful to determine the constants in such a mamner that U, - %

when U, — 0).

According to what has been shown above, Uy can never be superior to its
initial value Ui; of the connec-
tivity segment between the laminar
and "stationary turbulent" states.

Thus, ¥ will be the fictitious
& value of Uy at infinity upstream,
i.e., on a plate extending to in-
finity upstream for which the “sta-
tionary turbulent" flow will start

u .
kY from the leading edge (Fig.9). 1In
X
0

fact, the same reason which caused
us to state that U, practically
reaches its lower asymptotic limit
x=0 x; X X for a minimum path x - x; > 0 is
applicable here. In the fictitious
Fig.9 flow, which is "turbulent" from the
leading edge of the plate, U; will
retain a value practically equal to
9 from the leading edge (even if this is at a short distance xj from the criti-
cal segment) up to the direct vicinity of xj.

However, at the leading edge itself, the boundary sublayer consists of a
first particle starting to rotate and then
rolling along the wall; this layer is such —

- or at least we must conceive it as such - that

<j§:L—*—- U, it alone constitutes the sublayer of constant

; velocity gradient Uy, ensuring a cancellation
, of the velocity along the wall and a con-
/ nection with the velocity Up of the external
flow (Fig.10). The actual boundary layer /51

Fig.10 does not yet exist since a single layer of
particles forms the entire boundary layer.
From now on, we must set U = Uy,

Evidently, this reasoning on a fictitious state is quite precarious. Never-

(
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theless, we are convinced that - until proved differently - it is entirely
logical.

17. Return to the Relations of the Problem in x

The relations to be used here are finally as follows:

A relation (I) of the base of the actual boundary layer,written in the form

éE’z—f}g' 2(;11-2‘)'5302"':3:—%0.
1 ° (Tb)

A relation (III) for variations in the losses of momentum, written for the
local friction coefficient

2y (O) (1-2.0)
“r+2g\u) '3 0,) T

(IT1p)
2v U U 1)U
=2| 4 e L2y _>_1>— __1]
[:AEz+3U E+Uo U0<1 U,/ T | T,
A relation (II) for the base of the sublayer
Us Uy Uy—X[U—U, , X, U—X
U, = 2y’ U, l_ Uy +UoLOgU:— ] <IIb)

Finally, this must be supplemented by

18, Integration by Parts; Development of the Quantities

It should now be possible to make a step-by-step calculation of E(x) and
C?(x) from egs.(I) and (III) since Ui (x) can be determined by different means.

However, one difficulty arises here: The demonstrated solution Uy (x) shows
an initially extremely rapid evolution of Ui with x, meaning that Uj, <0 is
highly important. Here, we generally are no longer within the scope of our
basic approximations with respect to eq.(I).
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18.1 Case in which Integration is Possible /52

We will return to this case if the rotational term varies little, which
happens in the two following cases:

The first case is that in which U, has reached the neighborhood of its
asymptotic value X and in which the values of U{x, ngz, ees in eq.(I) have be~

come very low such that the equation is reduced to the following form:

. B

, 1 1 v A&
EEz—z—niz(r?)E'E"x-gm'Tv (Ic)

U,

Simultaneously, eq.(III) becomes

2v/ XY 2 X\ C*y, /
C*/-i-—G;('IT) (1—30—0)_C}" =248, ( )
IITc

P (%;) taking the value o = JE(—[}T{O)

It is here a question of a general case (independent of the point x; where
initiation of the "turbulent" state takes place) which, however, does not de-
fine the evolution of § (and of CJ) in the narrow domein in which Uj is im-

portant.

The second case of possible solution is that in which §; is sufficiently
small for having - even if U{x is large - €5, €; and V remain low and in con~

formity with the approximations made. Consequently, it is necessary that the
Uox;

Reynolds number ®; = , characteristic of the segment xj, will be low

which would mean that §; is very low.

Conversely, the restriction that €5, €4, V be small will still be respected
as long as it is a question of studying the second domain from which eq.(Ic) is
derived and for which U{x = 0, without restriction of the Reynolds number.

A method for integrating this equation and the resultant solutions will be
demonstrated later in the text.

18.2 Solution of the Second Case

In this Section, we will restrict our investigation to the case of very
low R, so as to study the problem in its simplest possible form.

m

According to a previous statement (Chapt.I, Sect.6.1), the terms in 5,

54



g

- m
Ulll;a [originating from (—g—) of the equations of rotation] are comnected with
x3

the presence of a residual deviation Au(§) existing at the level y = € between
tléle”/calculated field U(E) and Up. As long as § is sufficiently low, the term
E%E.a will be small with respect to §E{. This will also be the case when R is

"

small (with €; being very small)., In that case, we can neglect the term .5 in
eq.(Ib) which, at the increments A, will be written in the form

213
7: -—
Ay— M . A.Ev- E AUI
TN T TG
U, U,
with
AU U, U, —XTU,—U X U, —X
hITo—x=—ﬁ._lU°——[ oUo ! ULogU0 X:]Ax (solution to §{ = 0)
-and

Uy

[Let us recall that £ and B are functions of T
o

and B being negative (see Sect.11.1l).]

s with £ being positive

The first step has x; as origin, where the field ceases being laminar,

The Blasius field is such that U practically reaches the value Uy of the

VX
Uo

As already mentioned, if the last laminar segment x; is the first segment
in which the "stationary turbulent" state begins, then the limit of the sublayer

of this segment is marked by the level Y where the gradient Uy ceases to be
constant. Thus, we obtain

external flow for Y = &6, = 5.5

E -
s—;g 0.385, U, 0.5,

whence

=35 (1—2—') =550/ (sherea = 0.635)

The laminar local friction coefficient, according to Blasius, is expressed by

0.665  0.668
®R; Gz
v

C"'/l =
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Tt will then be noted that

= 2485 .~

*, 5, —
g Cy = 375 - 0,66 - = T

is independent of xj.
Let us take Uy as independent variable. Then, to the successive AUy < 0, /5.

starting from the first step, there will first correspond very small Ax (fa.ctor
Uo

of —3 > and 0§ such that
2v ur
3 AU
AE~ Ay,
o — 0, T, >0
[
Here, & increases rapidly. U,
U -7
Since the term A \,U° is weak with respect to <——A—- -
Uo Uo C?— 1 Uy

N . A (o]
- %), the variations in the coefficient of friction ACY are larger than zero,

and C)’f‘c increases rapidly. Then, for the same steps Ax, the terms AU < O will
decrease as soon as Ui approaches its asymptotic value X.

e B
In AE, the term Y . A, Ix becomes the principal term, which
2Uo ﬁ g
Uo

means that € remains a (slowly) ascending function of x.
So far as the ACY are concerned, they will first weaken in the same manner.

As soon as the remoteness x - x; is sufficient and as soon as U{x has simul-

B
- v 'IT ? K AX
taneously become sufficiently minimal, we will have A = T E T E
o
(with Uy taking a value very close to X)*. TUo
Simultaneously,
ACr U, 1

- AE—3Tt - Adl.

o

C*2
4

RS

* To distinguish more readily terms referring to the case in which U;, = 0, we
will use the notations Cr and § with vinculi. At the same time, U; - X.
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_— A— E* .
This means that ACF will be zero at TAfc— = Tf.;’ i.e., as soon as the value

e . . A . .
taken by C7, on substituting Eg by its above value, will become

LB
= — A1
Cl = F e
g o X &
U,

Thus, Ci.' passes through a maximum as soon as the slope §; is sufficiently shal-
low: Starting from the corresponding point, C¥ and § will continue to develop
in accordance with the reduced equations established in this manner, correspond-

ing to Uy = X, Uj, = O.

m2 B 1
Y . . . s
The relation Ey = i A . & is easy to integrate, yielding /55

Uo .
7-.2__
= v A

&—8) =g X [z — =]
Uo

The quantities E.J, X3 are the original values, i.e. those corresponding to
the conditions where C¥ passes through its maximum (or very close to it); see
Fign]_-l.o

ut

It is already known that X
X

A

Let us attempt to determine ,:

. _ T In the domain x; < x < J_cd,
— g we have seen that - in principle -
i the step-by-step variation AE re~

sulted from the term in AU, < O by

€ O g; L 1e AE o — EU 'AUUX.
Wall Xj X; X —_t °
o
Fig.11

For AU, extending from U,
which is the initial value in the segment of connectivity with the laminar state
up to X which is the final value, we thus have

AE AU,

—_— A

E - Uo_Ul.
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By integration, we obtain

meaning that here /56

Since &y is connected with the thickness 6. of the laminar Blasius layer
in the segment x3; by '

g=odym550\/ 7  (0220.635)
0

we obtain

— _X
£ =6:55. /x/. Uy
TEVT T
U
N ne B
and, somewhat farther on, allowing for the factor in i . A which had
been neglected about x; (as well as U; # X), Uo
A
3 — g3. 558,22 I R —
g =g 035" U, ___[_J_o_ }‘Uo N @~ z;)
Ui, U,
B X\ P
v YA v — _Uo ™A
=T X 4T | 5.5 T, —-x
U Uy, U

It will be noted that the restrictions made for the use of the integration
by parts are applicable only to eq.(I) in §. Thus, they affect only the law
€(x). The conclusions drawn, specifically the presence of a maximum for C?(id),
remain valid as does also the corresponding relation

Cr =2£.%, l_?e=4e(%‘> for U,_.X],
0
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since this is directly derived from eq.(III).

Tt should be noted also that § would become independent of x3y and would be

identified with a unique solution £ (x) if the bracket before Xy wWere zero.

v
Uo
At the same time, E?h would be identified with a value CJf(x), independent of xje
Tt will be demonstrated below that the latter is a general fact (not connected /57
with small values of R3) and that it agrees with practical experimental results.

The first fact [uniqueness of the solution £ (x)] is not general; it is
linked to the small values of R, which is the only case investigated here.

19. Condensation of the Solutions to Uy =0 about an Asymptotic Solution

In accordance with the general results of dimensional analysis (Ref.2) ap-
plied to the boundary layers, the laws of evolution of the quantities in ques—
tion depend exclusively on the corresponding Reynolds parameters.

For downstream segments far removed from both the leading edge (x> 0) of
the plate and from the segment x; of connectivity between the laminar and "turbu-
lent" states, the local quantities that characterize the boundary layer should
tend to a state depending exclusively on #x since the episodic events occurring
far upstream no longer have an influence. This, which agrees with the experi-
mental facts, is a necessary consequence of dimensional analysis as soon as the
existence of definite laws governing these phenomena is admitted.

The solution formed by a boundary layer which is "turbulent" from the
origin x = O thus will be an asymptotic solution toward which all solutions with
a transitorily laminar history will tend (this will be especially true for the
friction coefficients). \

Ul s starting from a certain segment x and for an arbi-
o

trary particular solution, tends to a definite limit —— X ———, this limit
Uo

In addition, since

Ub

should be a universal absolute constant irrespective of the particular case

under consideration®.

19.1 Determination of the Value of §
o

Tt is not easy to fix the numerical value of § s however, since this
0

value is universal, we are entitled to make use of the case of smgll R; treated

* The rigorousness of this conclusion is obviously limited by the approximations
of the theory.
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Uyy

in the preceding Section. It is known that this value must be lower than T
o

with respect to the boundary of the sublayer in the last laminar segment x;

U - -
(whence U}d Z 0.66). On the other hand, in the expression of €2 given in the
o

preceding Section (which is valid only for small values of Rx), the term in x
is that corresponding to the asymptotic solution:

= vxe
E:\ 2_(— .~L—I;'
Uo

i.e., Lis.

(RE ==
From this, we derive
iy
<
' 1 T,
(R = 5+ ¥ U
VR,

and, still for the asymptotic solution,

_ 2B

L _ % /=%

P2 = 2 K (R = — A
! P (R o X
U,

If we first assume that the statement at the end of the preceding Section
is rigorously applicable, then the maximum of C§ must be identical with the
value calculated here, meaning that (mg)éx (or §%) of the complete expression

must be independent of xj. This condition is written as follows:

_X\* B .
— U A
2 5 R2 0 _ —
6® 5.5 1_U1j X 0,
T, T,

at least in first approximation.
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] X Uy
This condition, in principle, defines T as soon as — ! and —%— are
) o
fixed; however, B is not accurately known numerically (see end of Sect.6.2).

A

On the other hand, in discussing the integration by parts we showed that
the local friction coefflclent, startlng from the laminar value in xj, should in-
crease, to reach its maximum C¥ in x; = x3. This coefficient, at the same
Reynolds number Rx,, will be

Cr = Cr with Cr =

From this, we derive

7:2%
7 ? = 0.665
Uo
Eliminating —%— between these conditions, we obtain /59
X b3
1___
. U /0.665\?2
o 55 T —{O_Gib) >0
{— 2 \ st
U(’l
or
X
(1—U;> > 0.065,
with # being a function of ﬁ . Thus, without making use of the more or less
o
) . . B . X L . .
inaccurate determination of - we find Ta~ < 0.4 to 0.45%, which we will re-
/ B . \
tain as the most probable value Kthen, we find - 1.58, £ = 0.113).
. qQf +
Let us express the coefficient of total friction C: = ——EL——EE— where gg *
° u3x
2

+ ge¢ is the loss of rate of flow of the momentum in the segment x under con-
sideration. This coefficient is connected with the local coefficient, as

* Nikuradse gives 0.38 as result of his experiments. Considering the configura-

tion of the field U(y), it seems that should be slightly higher than 0.45,

possibly because of the fact that one should have taken > 0.66.

o
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follows:
1 N PR 1(=
C,(x)—xxoc,‘(x)dx-—xc,(x,)+xS:’C}‘dx_+ESEIC;'dx
or

o 10
Cj (@) 222/ Cp () +3—;S Ctdz
Ti

E%fdx, which is the asymptotic solution Ce (x).

O!'_:N

1
which, for large x, tends to -

Let us return now to the equation in € (derived from the fundamental rela-
tion for rotation at the base of the actual boundary layer). We will take from

this equation only the terms in Ui, (and Uy,;) since the study to be made con-

cerns the asymptotic branch where Uy = X = const. However, we will leave the
term in §; untouched, which is derived from the presence, in eq. (1), of resi-

dual velocity terms Au(§) at the level § since, for large evolutions of x, its
characteristic evolution may play an important role (see statements in Sect.6).
This is written in the form

1.1 L3
EE'z—ﬁ‘n_‘—ngEa a3 =

> &

20,

& x[

For the Reynolds numbers, this equation is expressed by the change of /60
variables:

Re=rr8 (R, =0

=G~ < %
whence
O Ry = (Re)5 - 2 Upp, 1
Uy v’ & R = E):'xmx=741.m=zl&
Similarly,
R 1 {n
(R s = 7o b
)
so that
Uy o
—V—o E 'c.’: = ‘RE (‘R'E)I‘er % ES * mei = (R."' ((Ra)"‘ﬁg,
Putting
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<
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|

©
-

" the equation is written in the form

U"\g (‘RE)'(Rx —a U‘{:z (‘RE)”'tRi- = b.

To facilitate the writing, we will use the notations
U\a =T, LR: = x,
whence

'y —ard e = b,

The hypotheses of small & ”:g , used in establishing the relation in &(x),

are expressed by identical hypotheses concerning ry, rys .

Let Y = r*, from which we obtain

Yx=4r3r', Y2 4 731" 0,

In Y, the equation becomes

1 Y a 1 Y% a

2N

Y s =2 ),

i.e., on integrating a first time (under the condition that b is assumed as con—
stant), we obtain

~7 a
\/Y —-EY',‘! =2 ) %4-const .

20.1 Integration of the Equation in ¥ /61

Let us put Y in the form of an algebraic expansion in x, of the fourth de-
gree:

Y =ux‘+ﬂx3+yx2+"qx+ﬁ.
Yu=4ax?4+33x2+2v= 4+
Y =12ax®+6Bx + 2.

For identification, we obtain
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\/.ax‘-}-[ixa-*-yx’ii- 'qvx —i;(=[12ocx2+6@x+2'y] +2bx+C
=6aax®* + BRa+28)x+yat+C,

i.e.,
ax‘+5x3+Yx’+‘qx+.’;=36a2a‘"x‘+2(3ﬁa+21))Gocax3
+i12aa(ya+C) +@5a+20)2 w2
+2i(ya+E)BLa+2d)x! + (va+ 3.

From this a first particular solution is obtained by putting

1

o = 30 a? a* or & =z a
B8=2@Bfa+2b6aa or B(1—36a%*«) =24 baa,
v=12axa(ya+C) +@Bpa+262 or v@-—-12¢a®) =12aal
+(38a+2b)?
n=21(ra+OGRa+2NEl o n=2j(a+C)@bat2t),

L= (ya+4CpA

whence
Yi=oaxt +B%® +yx +qx + 3

In addition, a second particular solution exists which is obtained by set-—
ting @’ = O whence B’ = O. This leaves Y, = 6B'n + 2y’ = 2y’ constant.

The equation
¢§1—%Yu“=sz_kc

reduces to
y/?=2bu +C +ay'.

Identification yields /62

‘(I =4 b2, 'QI =4 c br tl = czn

and the second particular solution will be
Yi=402+4b@E +ay)n +(E +ay)

The general solution of the suggested equation thus becomes

Y = Yx k( + Yu klh

6




where kj, ki1 are constants. This yields
Y = koaxt + kB3 4 (ke +4 0 k)< + [n ke +45(C +ay) k] x
+[§ ke +(c +aY,)2 ku]s

whence
. 4
U\'E = Y (x)'

The total friction coefficient, according to its definition, is expressed as
follows:

C,_z_%z?e=t%i27e.
Consequently,
[ ke vk +dBke mk +4b ke (€ +an)
o kla_i_z‘,{_i_i_t%__g_i_’l |+7{;<+_aw>
=24 . A ne .
+)knA(Lf —}-(IY) + kT
RS ’

(where £ is a constant)® which is finally written in the form

: ® TR twRE TR

2.2 Relative Significance of the Coefficients and Evolution of Friction

Let us now investigate in somewhat more detail the identification condi-
tions determining the constants @, B, v, T, { of the first particular solution.
These yield

1
* =36

(1—36a2a)B =24baa,
i.e., , /63
meaning that again B — «.

Obviously, this is not rigorously so since the equation of the third order
in §, retained here, is only approximate (for rotations at the base of the

% - X . . . . .
* Here, # depends only on T as is obvious when referring to its expression
o .

- . X
(Chapt.III, Sect.11); £ = 0,113 for T " 0.45.
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v
actual boundary layer, specifically the terms in - §;3 have been eliminated).
)

Nevertheless, this means that B assumes very large values. Then,

Y(1—12ea) =124aC + (35 a -+ 2 b)? o 9 a3 33,

9
Y ey B =135 @ o,

2.27
0.66
U= (va+C)?==182-a¥3* (finally,y' =4 b?).

1=2)(ra+C) Bra+2b) T et =81 a8,

The boundary conditions that must_determine the three constants of inte-
gration €, ki, ki1 of the equation in § are, in principle, the conditions to be
written at the starting point of the boundary layer, i.e., for extremely small
f, (here, the asymptotic solution is involved).

These conditions, in particular, lead to a definition of the constant term
of Y(u), namely
Cki + (€ +ay) ky,
such that
Chke = k- 1825+ @b 3%
will assume a finite value, with B being extremely large and kj being extremely
small; in Y, for moderate #, this will leave
Yo d P hawd +140(C +ay)kutx 4]0k +(©E +ay)hil
Thus, with only an alteration of the constant term, Y is identical with the

second particular solution to which there corresponds the equation in €, of the
following reduced form:

Eilx = b.

Thus, for moderate $:, we will obtain

T =

where Y, T, C reduce to the terms in kj; (which & and B do not contain).

When R, is much larger, the neglected terms will gradually gain signifi- /[64
cance with respect to the terms retained above, which incorporate Ry in denomi-
nators at the highest powers. For R - «, the principal term will basically re—
main as follows:
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E/au = </E

(a nonzero limiting friction exists here), with the term @ being necessarily ex—
tremely small in comparison with B, as indicated above. In fact, we are unable
to define the conditions of origin of the turbulent layer corresponding to the

asymptotic solution, since the characggristics of the slope to the origin §/(x =
= 0) and of the radius of curvature § 5 (x = 0) are lacking.

At most, we could make the following statement: Previously, we mentioned
that, for x = 0, the "turbulent" layer - if it were able to exist at all - would
reduce to the sublayer since the velocity at the boundary is Us. For the order
of magnitude of the thickness of a line of particles in rolling motion, we found

~ V20 ~
yE (see Sect.9). Thus, the local friction coefficient in x £ O would be
o
R U;'E__
C; ($=O)_£Uﬂ.§6—v—0.l'
2 "

Consequently, if the layer could start from the "turbulent" state, the local
friction coefficient would be lower than that of the laminar state [Cfm =

= (_9;§§§_> - o as R - O]. The laminar state would be at maximum entropy, which
VR

would explain its necessary establishment in the start-up zone x = O.

For a quantity x which is larger but still sufficiently small to render the
integration in parts of the preceding Section (Sect.l9) valid, the local (asymp-
totic) friction would be

0,67
T VR,

fOI‘ = 0045 and ’—E- = 1-57, ‘Z = OJ]J-B.

o
This represents the domain of increase in laminar and "turbulent" friction.

From this follows the "turbulent" total friction C¢ & 7§§2é-. This expression,
X

valid for small values of Ry, must be in continuous connection with the general

expression
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This means that, in this domain, @ and are very small with respect to /65
— X

and that T and { can be neglected. Hence, we obtain the following value

R2 4
forﬁ:

\‘/};g 1.34.

No further information can be gained from the integration by parts; one
would have to be able to extend its domain of validity to that in which Ex, §”2
would cease being small. However, this is not the case here.

Two further conditions are required for determining @ and B.

20.3 Numerical Results

Obviously, these results can be obtained from a comparison with practical
data such as those obtained by Wieselsberger, Gebers, and Kempf which are clas-
sical.

We find
@z 8.10-13, B2y 700.10-% = 0.7.10-3
so that

700 10— 3.25
— 12
_\/8 10— R -+ R

The accompanying table gives the elements of the curve Cr (), while the
Diagrams IV in Section 40.5 indicate that the law derived in this manner from
the theoretical expression of C: agrees satisfactorily with the experimental
points.

We will also calculate the local friction, since

1 a _l—§. E. — i ..
T = —,ﬂ CrdR and  TF = (R Gy = — 28 g
(— B\
“+m+ar>
HA ooeen 0.315.10¢ 1.108 2.108 3108 10 - 108 100 . 108  315.10¢

logie R ...| 5.5 6 6.30 6.48 7 8 8.5
Clovennnns 6.8:10-3 5.15.10-% 4.3%.10-% 3,9%.10-% 297.10-% 1.9°-10-® 1.78.10-3
log 109°C,.| 0.838 0.71 0.6:4 0.595 0.47 0.295 0.25
(o SN 5.3.10-* 3.89.10-% 3.39.10- 3.10-% 232.10-% 1.7%.10-3 1.72.10-%
log10%.C7.| 0.72 0.585 0.52 0.47% 0.368 0.240 0.238
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- 4 - .
Tt will be noted that the minimum friction for ® - = is Gr =@ or Gt S /66

=1,7 % 103, The table also shows that @ and —%— become negligible with re~

spect to ;2 for R < 1000. This accurately defines the validity domain of the

previously used integration by parts.

21, Determination of a Theoretical Value of B

Even if one cannot proceed to a theoretical determination of the coeffi-
cient B, an attempt must be made to define at least its order of magnitude by
theoretical considerations.

First of all, let us review the state of the art as of today.

21.1 Status of the Problem

In the preceding Sections, we performed calculation of the evolution of the
boundary layer on passing from the laminar to the stationary turbulent state,
for the case in which this transition takes place at low Reynolds numbers cor-
responding to the domain in which C; = fL. To this corresponds a mechanism of

initiation of rotation of the sublayer elements such that { (see Sect.l2.3) is

close to zero, and a critical velocity X of the sublayer such that

= 0.45.

This domain of transition (denoted by the subscript j), considering only
the stationary Navier—Stokes equations, is extremely short (MR ~ 6); this pre-
vents us, with the approximations used, to extend our calculation to the more
important R;.

We also were able to calculate the form of theoretical evolution of the
local friction coefficient C‘ corresponding to the domain in which U1 = 0, i.e.,
U; = X (where X might p0331bly decrease slowly with increasing X)e

In the theoretical law

Y is known while @ and B are not known despite the fact that, accordlng to the
above reasoning, it is known that @ = ki@ is certainly minimsl in comparison

with B, such that @ will play a role relative to -%— only for really large R.

On the other hand, —%5- will be notable only for very low values of R.
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Finally, if we know the law §(Up) in the zone in which Uy is in evolu- [67
tion, then the law of thickness € of the sublayer (see Sect.l5) will result from

e =g [1 + S::,-(l + % (UY) %ﬂ (c/ =(1—a)55 \/ ‘%—T"f—)

From this, it is easy to derive a condition for the local friction:

With Uiy = 0.66 Us, and thus €, = 0.36, the expression & = 2 ; MRy, c¥
is written as follows: °
U,
2v U
C7=——. 1
U u, »
l’ l

valid for the same zone.

If we consider a moderate value of {, this quantity will be removed from
under the integral sign. For Ui, reaching the asymptotic value X, we will have

X
CT’,= 2v ] Uy,
P 40+ O Log gy

As for the laminar state

it then follows that

X X
M1 4.1+ Log - VR 141 +%Log
1 Uy,

21.2 Posgible Forms of Evolution of Local Friction

Next, let us establish two working hypotheses:

1) @ = k;o will be considered as equal to zero.
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It should be mentioned that this is not incompatible with the previous
theoretical data and also not with the physical aspect of the development of
friction.

2) Our second hypothesis provisionally will be as follows: As soon as m,,[ég
which represents the characteristic of the point of initiation of the "turbulent'
state, is no longer small, the velocity
gradient Uy in the sublayer will de-
velop rapidly and this initiation will
manifest itself in the sublayer by in-~
ducing rotation of its elements in ac-
cordance with an average mechanism to
which a certain value of { is attached.

It should be noted that, when®, is
small, these gradients differ little
from that existing in the laminar layer,
there is only a minor change in the
state of rotation, and one approaches
the constant~pressure process (second
scheme, see Sect.l2). This means that,
for B =Ry which is relatively weak but
nevertheless the largest value to which
the simplified step-by-step solution
1nvest1gated in the preceding Section
is applicable, we have Cj = C7r (For

. the time being, we are unable to define
Fig.12 the order of magnitude of Ro except by
experimental means.)

Nevertheless, let us consider a start-up value R, , large with respect to
Ro. To this we will assign a certain average value of §, namely {i. Just about
when this value is fixed, the relation

(see above, Sect.l2.3) will show that C* is represented, in the logarithmic
diagram (Fig.1l2) by i1

X
log T¥y, - 10° = log €%, - 10° + log -~ -t M,

1+ +12) LogU

This figurative point will thus be located above log o CfL + 10%, From this, /69
at increasing R, the point will shift along the straight line Ay of a slope
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1 .
~ —, since

- B -
0.75 - 4 = 4
C* ~ R — o4 .E — % d J
C7 = 6 \se 0755\ w = C*’f\/a— '
(&)
whence
—  C*,
5= R

In this image, 8 then is a parameter depending in principle on ®;, which is the
characteristic of the point of initiation of the turbulent state.

The same reasoning can be used for all & > Ry, to which there corresponds
a system of parallel straight lines of slope — —%—, originating at the points J,.

Among these, one line (n%mely, A) passes through the point jo of the coordinates
log Ro, log C?LGRQ) e 10°, However, it has been shown that, for very large R,

a condensation of the characteristics of the "turbulent" boundary layers and
thus also of the local friction C? into a unique asymptotic solution must exist
there.

Consequently, it is necessary that all straight lines A;, Az, ... converge
into a single line. This is impossible with the hypotheses made here, which
led to the preceding diagram. However, it will become possible as soon as the

curve log C} coincides with the straight line A of slope - -%¥, passing through

jo. In that case, the diagram will assume the second of the above-indicated
forms.,

21.3 Conseduences

A preliminary and highly important conclusion can be drawn from the fact
that the figurative straight line A of log C¥ is unique: On initiation of the
"turbulent" state, the local friction coefficient will osculate the figurative
unique curve of the asymptotic local "turbulent" friction. We will show later
(Diagram III in Sect.39.1) that this fundamental fact agrees well with practical
experience.

Another conclusion concerns the development of { with R, In fact, as shown
before (see Sect.l2), we have

- X
Cf Ulj L (X h Ul_/

X R Sy 0.66)
o, <L a0 [Ya060),

' 1+(1+c>Logﬁ’§j
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and thus

X \
_ 1 Uy,
147 - Uy, 1— RS
8% =
For h ~ Ro: /70
C__,;
G~ L 140082, {-—-0.18,

For f - o

Cr

1
i — 1.6.
C"l" - 00, (1 + C) — oz UU = 2.6 and 4 1.6

Between these values of R, we have

— = 1,12

C*/ = (R
L [
0.66 \/;0

This ratio will be known as soon as Ro is known. A determination of g by com-
parison with the experimental results led to values of Ro of the order of 10°
(this result, obtained by a different process will be discussed later in the
text). It is then possible to determine the development of { with® s which
first increases rapidly close to { ~ O and then slowly rejoins its asymptotic
value of 1.6, in accordance with the accompanying table.

4
5 g
C—;; 0-70 \/ (R {/ U\

R 108 108 103 107 108 0
i4+% ... ~+-0.82 1.96 2.33 2.45 2.51 2.60
T oevennnnn —0.18 0.96 1.33 1.45 1,51 1.60

2l.} Correction in the Scheme of the Domain of Ro

Actually, in the domain of Ry,

the term in —Y—Wr of the complete expression
for the local turbulent friction
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is preponderant, such that

W —_—
T Ry =2 05/ -L 0.667

= = .
U\; \ /‘Ro

In the preceding scheme, it is necessary to substitute the straight line A by /71
a straight line A’ located slightly below 4, such that its intersection with the
figurative straight line A, of the laminar friction will be slightly superior

to R in j§ to which R{ corresponds (Fig.13).

_ —_— g
For % > R, the term C§ reduces to C§ = 0.75 "%’ so that, in the loga-
rithmic diagram, we obtain

— =
log C} =log 0,75 \/;3 —zlog (R, log C*;, = log 0.667 ——%log KR,

Putting T = log Cf and x = log ®, the equations of the straight lines A, By
will become

"o

T=r—

Z . X
Z’ N = 7o, —'2_v

while their intersection in x3 =

= log R} will be such that 4(To -
- Mo.) * x5 = 0, so that

*
log C,

= (G4 002

B
log Ry log Ro AN log R
If it is assumed that very lit-
Fig.13 tle deviation exists for ® = R be~
tween the approximate expression of
%, namely

and its complete expression

0



g

then we can put

Y - B
Y Bys o PVa, 4+

(@ + a7
where 6 is smgll.
Let us set _ 5 [72
7
RTTHEE

From this, we obtain

in accordance with the above-given expression.

Consequently, K = —6—%56- = 5, We also obtain
0.5 +0.75 -
ST = 07531 +9),
ct (R$)

i.e., 8 = 0.1} as well as = 1.14. From this, we derive §{f = 0.05.

2.5 Determination of a Probable Value of R{ in Accordance with the

Belafi&e Importance of the Terms

Thus, for & =RJ, the totality of the quantities in question is known ex—
cept for R§ which is still lacking.

However, so as to keep the analysis coherent, it is necessary that the
general hypotheses on which the analysis is based can be verified. One of these

hypotheses refers to the order of magnitude of -Y%il— which is the slope of the
1

streamline. It has been demonstrated that this term should be negligible, i.e.
(see Sect.2 and the corresponding statement), should be of the third infinitesi~
mal order, with the first order being about at O.l. Consequently, the third

€
order is near 0.001 so that it becomes necessary that —Yé—z- < 0.001. However,
1

with € = hU%+C, such that

&, = 0.365 - 5.5 "T’i’ = AU
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we obtain

The established turbulent state is characterized by
— XA\ig
€ = €. <L_TU> ’

i eCo s

- X482y —
& =<m) .T):\/ ;.

Since, according to the continuity equation,

0= ~(%]

g
= -5 GUllx and, consequently,

-~

.'—'2 with (EL)I == _C Ull.r _ _: Ull.r
2 z [lU;‘c - e

it follows that V(e)

VG A, g
G, =3¢V Vu=gq- gxﬁcu U
’ AU, - v
Let us now evaluate U; = T’ Here, [AUi| = Uy, - X and Ox = = MR,
°
R
J

Tt will be shown below (Sect.39) that actually the transition extends from

from which it follows that

to Ry, meaning that we have AR =
0,2 U,
©  (with Uy 0.65U, X = 0.45U,).

Uu%'—.v. &
U,” 2
Thus,
V_(E____L.@c<_><_>‘<_o4 I = ot Je(EY. L
U, U, Uy Uy, TOVR Ul/ U‘J U\.

€
(e) < 0.001, in ® = R, will become
1

The condition

e 0.4% U,
\/(R’o > o001 ij <ij> :] = 25t030,
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U,

for € = 0.05 (at = 0.66 to 0.65), i.e., R 2 650 - 900. The order of mag-

nitude of 103, obtained already by experimental comparison, can be approximately
defined; then the order of magnitude of the value furnished by such a comparison
0.63

RS
Obviously, this is not a real proof but only a statement having the purpose

of demonstrating that it is unnecessary to use experimental results for defining
the order of magnitude of RJ.

(0.7 x 10°®) will necessarily be obtained for B =

21.6 Case of the Constant Term & being Nonzero

Later in the text (Diagram IV in Sect.;0.3), we will give a plot of the
straight line A’ with respect to the experimental points obtained by‘Wiesels-
berger, Gebers, and Kempf (as well as the curve Ct where P and @ are of experi-
mental origin).

Kempfts experimental points with respect to R, extendlng from 20_to 350 x /74
x 10°, show an upward convexity of the curve log 10° C¢ (and log 10° C§) which
- &
would.not be compatible with the general theoretical expression Ce¢ =N& + i%—

except under the condition of assuming @ as belng nonzgero but very small with
respect to B, as stipulated by the theory (@ = 8 x 107*2),

One of the basic premises of
our gbove reasoning fails in this
case, so that it is no longer pos-
sible to affirm the existence of a
unique asymptotic solution except
for # = «, where all curves A, ad-
mit of the horizontal asymptote

4=
log,Jg-- 10%, A priori, it is now
impossible to state that the curves
A, in the zone in which they are

rectilinear Q? small with respect
B\ . s
Fig.l) to -ﬁ—j are not distinct. To each

of these, a wvalue En is then as~
signed (Fig.lh).

Let us attempt to define the domain of variation of E;. For this, let us
consider the domain of R enclosed between Ro and Ry, with Ry1 being the value

of R relative to the intersection of the straight line A (of slope - —%—, origi~
4
nating from jo) with the asymptote log /& « 10° = 0.22. Since the equation of A,
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with the notations used before, reads

1
W= ")o’—z(.’ﬂ-—-xo),

where

Zp=log Ry =281 and 4, =1logC¥, . 10% = Iogw = 1.42
R,
this intersection will take place for
T=Tu =T+ 4 (g—uu) where w; = 0.22

whence

Ty =176 and Ry o2 40 - 108,

This would define the order of magnitude of large values of ! where the /75
constant @ starts to intervene in a noticeable manner.

Tt is then found that:
Ba
R

1) In ® = Ro, the gquantity -Ya; is large compared to from which, for
R

Ro = 0.65 x 10°, it follows that

f‘i _132 3.2 _
SI0ORTT0.042- 10 °F  Fa < 118-10-5

B
2) For B~ Ry; = 40 % 10°, the quantity —— mst be of the same order as

R
— R —
o, i.e., for R < '5' = 8 x 10°, & must be small with respect to —;—. Hence,
—Pr 0.8 103,
8. 108

i.e.,

Ba > 640 - 10-% = 0.64 - 10-9,

The quantities En are enclosed between two approximate limits.
From this, for example, at ® = 1 X 10° which is the Reynolds number for
which @ a;_ld lg— can be neglected with respect to %, it follows that '59; =

~ 4 B
= 0,75 e will be comprised between
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0.75 V0.64 +10-*=3,75.10-3 and 0.75 V12 + 10~ =4.4.10-3,

meaning that the quantities log C¥ * 10° range between 0.58 and 0.64.

Tt is then no longer possible to affirm the existence of a true asymptotic
solution A’; nevertheless, as shown in Diagram IT in Section 21.7 a condensa-
tion of the solutions about A’ takes place, which is a narrow condensation such
that the above conclusions with @ = 0 will remain approximately valid even if &
assumes the value suggested by the exceptional measurements by Kempf.,

However, still another explanation might exist: It is known from experi-
mental results that the wall roughness increases the 1ocal friction to such an
" extent that, taking K as the dimension of the roughness, C’ (ER) assumes the form

(") indicated in Fig.l5 at —i{_c_ = conste

However, Kempf'!s experiments were made w:l.th water, i.e., at a very low Vv
(1.0 x 107" at 20° as compared with 1.4 X 107° in alrS

Referring to the curves given by Prandtl on the effect of roughnesses /76
(Ref.1), a change in the function C¥ = —%—- of the same order as that appearing

in Kempf's measurements will be obtained for ',I%' =1 x10°¢

We do not know the length x of the plate nor the velocity used by Kempf.
Nevertheless, to obtain R = 300 x
x 10° at 20 m/sec (corresponding

*\
© to a height of charge —p2— Ug =
Q
g = _1C2)_0_ % 00 = 20,000 kg/m®, or
o = 20 m), it is necessary that
AI'
x=0—700 - 300 . 10% = 1.50 m.
(o] .
og R, Na, 2’ tog &
The roughness X - 1% 107° was
Fig.1l5 x

reached for K = 1.5 x 10™°, i.e.,
1.5 ». This roughness value corresponds to a quite noticeable smoothness of
surface.

It might well be - and in our oplglon with considerable probability - that
the curvature of the curve log Cf « 10°, revealed in Kempf's measurements, is a
manifestation of the roughness ei‘fect.

If this were so, @ would have to be considered as zero at the state of

perfect smoothness, meaning that an asymptotic solution in the strict sense would
exist-
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moment of momentum.,

80

Finally, another possibility to be studied might be that of the possible
existence of nonstationary components in the boundary layer, at the loss of
In our analysis, we limited ourselves until now to the
study of stationary components, while the development of friction had been de-
duced from eq.(I) (see Sects.6 and 17), written at the lower interface of the
actual boundary layer with the sublayer.

Below, it will be shown that the nonstationary components which are zero
along the wall, are very small along the border of the sublayer.

So long as the
latter is of minimal thickness, the effect of these components can be neglected.
The effect may also disappear at very large Reynolds numbers where the sublayer

thickens slightly and where, simultaneously, the components in question increase
along its boundary.

21.7 Laminar Blasius Field; Determination of the Coefficients &,

B _
and of the Constants —Ef and A.

"Laminar" field:

({j‘; =065, §=0635:55\ %‘—: 6 = 0.635
Y =+ \/%=(O.365 +%.%'—>5.5\/%
I A 0. . .
0= <0.360 +;0’630> D=2 +;3.o (see Diagram I).
Lo 0.365 0470 0522  0.575  0.681 0787  0.840  0.895 1
%-_-g .o 1/6 14 13 12 2/3 34 56 1
* =0.167 =025 =033 =05 =0.667 =0.750 = 0.835
4 eeeneend] 2 2383 2875 3165 3750 4335 4625 4925 55
Ui ....... 0.649 0.778  0.832% 0.875 0937  0.975 0988 0991 1
[+]
%1 eeea..0.630  0.650  0.650  0.650  0.630  0.650  0.630  0.630  0.630
]
U"%.—.o,ss-’é 0 0.0388 00875  0.116¢8 0,175  0.233  0.262°  0.293% 0.350
- _
-éi veeennl|O 0070  0.094  0.108 0112 0084  0.074¢8 0046 0
[}]

LI I | ¥ et
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Hence,

1 1 1
G0 =012, 7@y =0018, g by =0.003,
K,=1 K, =0.122

K; = 0,034, Ky = — 0,007

A = 0,900; B

R

= 1.415;

fl

B -
x 1.57.

Uj/Uo'Q'?s

|

w—O——0— Representative
Upg, * 1= €897 (1322727 cos h 0037%n]

law

(j= 06356

Yyitu,

€j203656

Uiru, !

: - « z - 14

i, | U’i/Uo'm'ZIZ, 8)je002 Kial K e0122 K,e0004 Koa=0p0
: ¥

Yo Xy 045.-‘112 o, #0476 8/, ¥ 150

A =013

%/ X xy/lj

Figclé (Diagram I)o

= 0.45; asymptotic "turbulent" field:
Uo Uo

'I‘j; (Dsj = 0.0008
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g ...... cos 0 0.167 0.250 0.333 0.500 0.667 0.750 0.835 1
S
% cernene 0 0.110 0.148 0,170 0.176 0.133 0.110% 0.083 O
0
.3\ ...... .|~ 0450 0.450 0.450 0.450 0.450 0.450 0.450 0.450 0.450
0
Uol?‘}_\__%. 0 0.092 0.138 0.184 0.275 0.367 0.413 0.460 0,550
[}
-8—.- evvess] ~ 0450 0,652 0,736 0.804 0.901 0,950 0.973% 0,993 1
0
1 . . . . B -
e, =0.176, K; =1, K,=0122, IK,=0034, K,=—0007, =157
U, A
2 1 (I)2n+1 _ “ i (Du _ L1 =
. 'I—J‘o'zn_*_l = 0.113, ;}4(—— 1)“-U0-—E‘———-0.106, Lm(bz=0.010‘

#£ = 0.275 —0.100 + 0.011% — 0.55 . 0.106 — 0.015¢ = 0.113

0.665 - 0,35

XN\ —
(1 “—> # = 0003 ~ 552255

Uo

Comparison of the laws of theoretical and mixed origin:

R 0.9.10% 0,315.10°¢ 1.10% 3.10% 10.10%® 100.10* 315.10¢
log R e 2.95 5.5 6 6.48 7 8 8.5
103. CF tanh | 25 5.17 3.86 — 2,18 1.218 -
log 103C? tanh | 1,40 0.71% 0,588 - 0.34 0.09¢ —
103.Cfennnn 222 —_ — — —_ — —
log 10°-Cp, ..| 1348 — — — — — —
103.Cr.exp.| — 5.3 3.88 3.00 2.30 1,725 1.72
log 10%. Cf exp| — 0.725 0.58% 047 036 0.240 0.23%




N
Jg I
i \\\\ ,A'
\ \\~ &’ max.
NI
\ & min. | R loglw" C* exp.
\\AL ~ /]
\ N

I ;4 5 [ 7 8 9 logR
log R 1og R, g

Fig.17 (Diagram II).
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22. General Remarks /83

The preceding exposé furnishes the means, starting from an abscissa X3
where the laminar state ceases to exist (whose velocity distributions are known
from the Blasius method), for calculating a stationary flow of the boundary
layer with sublayer, satisfying hypotheses less restrictive than those by Blasius
(var%ance of pressure, negligible curvature of trajectory of the fluid parti-
cles).

After an extremely short transition, a state of slow variation is estab-
lished where the friction depends little on x3, for which reason this state is
designated as "asymptotic solution". The friction develops with the Reynolds
number in a manner quite close to the experimental turbulent friction.

As indicated above, the presence of the sublayer is connected with strong
rotation components along the wall and with high friction. The configuration of
the velocity field is close to that of the mean velocity fields of a turbulent
boundary layer, except that several elements are lacking for a complete solution
(although of only an approximate type), specifically the means for determining
the point x; at which this phenomenon starts. The previously demonstrated tran-
sition extends over lengths infinitely shorter than those experimentally ob-
served. Similarly, no explanation has ever been furnished for the violently
nonstationary state which led to the designation "turbulent flow".

oUs
dx
cause for the change of state in the stationary regime.

i

However, for 0, nothing in the Blasius method permits detecting a

It will be noted that the Blasius hypothesis (invariance of pressure in the
laminar boundary layer) is compatible only with large radii of curvature of the
particle trajectories and thus with limited intensities of rotation.

This state of affairs obviously can stop existing in the presence of a non-
stationary perturbation brought in from outside. This returns us to the nota-
tion used by Schlichting in his method of perturbations; here, the results to
which this method might lead will be examined in some detail.

This represents the first object of Part II of this exposé.

To facilitate the analysis, we first attempted to represent the stationary
Blasius solution U(Y) by an expansion in powers of the type

UY) =1, [1_.2 d; c”“‘\/%'“}

Whe]:'eZ> a; = 1.

i

The next step was to take a perturbation of the external field of the /8L
simplest possible type which, in the axes fixed with respect to this exterior
space reduces to a small normal component (in v) harmonic to x and t. When
transferred into the axes fixed to the wall, this generates a nonstationary flow
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with sinusoidal streamlines in the field outside the boundary layers.

It is then sufficient to write the Navier equations and, retaining the
principal terms, to apply the proper boundary conditions after elimination of
the pressure, so as to study the fate of the perturbation within the boundary
layer.

This more or less represents the calculation method already used in Part I,

Tt will be shown that, beyond a critical segment x., the pressure will no
longer be invariant in the boundary layer. The laminar state, based on the in-
variance of the pressure, can thus no longer subsist and must make room for the
second type of flow, studied in Part I under the designation of "stationary
turbulent” flow, which is compatible with the variance of pressure.

In the following Chapters, the nature and propagation of a tangential
velocity perturbation (in u) at the interior of the boundary layer (laminar and
"turbulent") will be investigated. An application of the results permits demon-—
strating the real transition and, downstream from this, the existence of non~
stationary components of permanent state, explaining the reason for calling such
a flow "turbulent".
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CHAPTER IV /85

EFFECT OF A HARMONIC EXTERIOR PERTURBATION

23. Introduction of a Harmonic Perturbation in v’; Axes Fixed in Space

Let us consider axes XY fixed with respect to the exterior space (zero mean
velocity) and stationary perturbation velocity components u’, v’/ which are zero
in the spatial mean®™ and also are small; this will per—
mit - since v itself is small - to neglect the corre-
} sponding viscous terms in first analysis.

The Buler equations are written in the form

’

</
~

o=
&/
e

{

To satisfy this condition, u’, v’ will be derived from a stream function
for which we will use the form ¥ (X, Y) = o(Y) « £(X):

u’=b

|

o/
i€
I
-0\
<
~

From this, we obtain the equations

1
Q"..I.q)’y./'x—-(?.llx.(p”vz‘/—f—g.s——_—.:o,

1
—@vefro- [t x v [x +;°b——=0-
Let us eliminate p’ by deriving the first equation with respect to Y and /86
the second with respect to X, and by then subtracting therefrom
29'v v [I'x — (@' 9"yt + 09" [['x + 90’y ('x ['x + [/"x) — 2 90"y (/"x2 ['x) = 0,
* For u’ = 0, a scheme in v’ can be conceived which would obey this definition,
by assuming the space in question as placed between two horizontal walls over

which regularly intercalated sources and sinks of sinusoidal intensity distribu-
tion are distributed (Fig.l18).
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i.e.,
I'x (v 9"v: — 99"v3) — 90’y (/'x [*xt — [["xs) = O.

The integration conditions read

Q”’Y; _ 111 /I/Ix’ _ Ll_z;
@y 9’ [x -
Thus,
Log ¢"va=Log ¢ + Log C3, where(3 = const,
ji.e.,
@"v:— Clo =0,
With C = Za

]

© Q
Q = 9,8V + Qe = g, cos a 'y,
we obtain a solution satisfying the above conditions.

Similarly for f, we have
Log f'x* = Log f + Log v

where Y = o,
[ =/, cos aX.

Then
td
’ .
U =-—fio,asina¥.cos«X,

’ .
V= [fio,xcosa¥ .sin«X.

The streamline is such that

Yy =—= —gtana‘[. cot « X.

!

I~

A particular solution is any ¢y = O, ¢ = const ¢ ®p, so that

’

o/

t__ 0. v R
u = 0; 3v=0 V' = o, [, «sin « .

We will restrict our study to this case.

2). Axes Fixed in the Plate

Let us now consider a plane plate with a velocity IUOL in this
Fig.19), we have

the axes xy, fixed with respect to the wall of this plate
88

space.
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X=z2z—1U,|
U°

Y=y
i ¥ X Y 4
V777777777777 7777 Sz=b  Fy=1 3r=—u. -,
0o X *
S=lxXe=[ [i=[x Xi=—U, [
Fig.19

[ (X)) =[@&—Uol) = f (2,

The Euler equations, written in the domain exterior to the boundary layer
when reduced to the principal terms (Us large with respect to u’ and v’ s, will
yield

]
c

o

a

12 12p
W+U°-Dx+'slbg=o or ‘P'U/lt+U091u/Ix+E"b‘;=O-
2V AV 13 ] ., 13p
ST FUSz +355=0 o —efu—Us/m+3 5 =0.

For the solution u’ = 0, the following remains

)
%§=0’ 35=0 since ey =0 and [ =—T, ["=

This means that ¢o and f can be arbitrary values, without introducing any
contradiction as to the external flow.
Consequently, an arbitrapry constant ¢ = ¢ and

9/ =9 =gocosa(z—TU,0)
can be taken into consideration.

25. Introduction of Dissipative Navier Terms

The Navier-Stokes equations, in the axes fixed to the wall, are written in
the form
v f L 13p ’ v
‘Pu'/t'f'Uo?u/x'f"‘;‘b_x =v o'y [z 1 9"y f],
d

—?'/,:I—UQ(PI’:' e = —y

s o= /e ol

From this, by elimination of p, we obtain

@ [+ Uo "t [+ @ [Ten + Vo @ [Mar = v 9" [lart ¢yt f 4 @ [z + 9" f"21),
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iceo,

O+ Uaf'a) + 9 [/ + U [l = v [0 f + 2 4%t '+ @ "l

The solution

"y —Clo =0  yields = @ eV + gz e,

/3’—72/ =0 yields / = /1 ez +/2 s,

Substituting this in the general equation, we obtain the condition

Ca;/ll + Uo I:cf +/mx‘l +Uo /"xs =V [c‘/ + 2 Cﬁf":, +/””:‘]'

i.e., for the term in fie'*,

CUu+Uyf) + Y+ Uy i=v[CL+2C¢ +v i

or

P (G 9 + [y Ut (G o ¥ = (G2 = 7] = 0.
Lt — oy —v (@ +

so that, finally,
i = fi e lvy—ve+) .

Similarly,
fa = Iy, el e+

Consequently, the solution f is written in the form

[ = [fi, era—vt L [, e—rlx—ut)] gdci+vix,

If Y is imaginary Y = Z:d, we obtain
[ = Uy e 4 f, e Sem] o,

2

The solution will be maintained if C® - @® = 0, whence

¢pr—alo=0 and @ = ¢, €W + g e~V in real expotentials.

2. Generation and Propagation of the Fxternmal Perturbation

Let us assume that ¢ has the following form:
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P =9V 4 @z e~ +(?o.
where 9o is exclusively a function ¢o(t) of time. Then, coming from gq,
‘ du ‘o
ul'—'-‘?'y/=0, {)=-—¢?0/", _DT=0' -——‘=—9°‘o/:.

The term 9o will appear only in the second Navier—Stokes equation, over a con-
tribution

—— ?'Ol . /':——- [ /'_ﬂ —_ U° Qo /’x! to the first term

and
— vy /"ss to the second.
In the equation for the elimination of pressure, this term will correspond
to
@0 "zt + @0 ["an + Uy Qo "z = v o [z,
Sa(x-uot .
For £ = f1, e 2¢*7Y°Y | e obtain
[ [+]
— a4+ g Uptad— Uy 9o a2 = v g b,
This leaves [0
%ﬂ = —y ul whence o = gy eVt
']

and the same solution for fgoe—ba("U“) .

2

Since is very small, this means introduction of a term @o varying

Q’Uo
very slowly in time with respect to f.

If one desires to maintain the motion in ¢yfi, , it is necessary - during
each period of time dt 3 to introduce constantly from the exterior a component
dpo equal to vaPpeg e ¥ * o dt which replaces the dissipated component.

No matter how this might be, propagation of the component pofi, takes place
at a velocity Up. If this is generated at a point x* very far upstream, for

¥
example at the time t = 0, it will arrive at x at the time t = _x_wx_ and its

state will be characterized, with respect to the initial state, by an attenua-
tion such that
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—ygte

[9)s = gy Ve

\b
>3

If, at each instant following the initial time t = O, there is generated in x
a new perturbation such that

¢
?00 (l) = RQ ?'00‘ . d[ = 9’001 0‘ (9’00‘ = COnSt),

then the law of attenuation, in x, will lead to

"t
{ ve—val df = of . ["“’" —Wx't] —
?“kn%i “‘ﬂ-?mvﬁﬁ Vo —e = @4 (z, I, i>xux,
° [}

z2—z*

When t = », a limited stationary state will remain in x, characterized by
1
Q0 (Do = 00 * T2t Yo,

Thus, the introduction - into an initial permanent state — of a perturbation,

produced at an upstream point x” and maintained 11nearly as a function of time,

will lead - at a downstream point x - to progressive establishment of this at-
x = x*

tenuated perturbation starting from a time shifted by "'EF‘“"' The permanent
0

limiting state toward which tends the perturbation in x is such that (Fig.20)

T—z"*
Us
.

—verle

1
@0 (T, ) = 9’00, szt

’
A2
ot

N v/ v’
* =0 < =¥_=90).
x*, also S and 5y )
For a sinusoidal perturbation in x*, we will also have a limit sinusoidal

response attenuated in x (Fig.2l).

To this there corresponds = 0 but, since x = x* is large with respect to

27. Nonstationary Perturbation Interior to the Boundary lLayer; /92
CGeneral Fgquations

It is here a question of writing the Navier—Stokes equation for the varia—
tions introduced by the presence of the perturbations u’, v’.

Let us take a function ¥ of the stream relative to these perturbations,
having the form

V=@ /@®H+9(@0,
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such'that

u =W=‘Pu"f’ v =_b‘5=’—'q’/lx_gx'
u’ Qv
=%l Fr=—¢la— "=
U’ o 0 1ua '
Dx__q"’/," —x—_-—“P/'x*—g'x‘, by=q7u‘f» —y=_“°Pu/xr
au ' a2y a2 u’ 2y
'D—xz'—'_"?u/l"_ bxz='—(?/z"—'gmx': ayz=q’ll’/r Dya‘:—"‘?u‘/x
*
% (x™) [91

Fig.20 Fig.2l

From this follow the two Navier equations in the principal terms

du 2w’ AU 1 3p

o TUSE Ty Ty A
v w1 ap
STHUSs+p g = v A

where U is the pre—existing velocity, namely
, , , L 1ap
o' [t + U CPu/’z—'(CP [+ 9= U v +“; 3% =V [‘P'U e + 0"y fl,

!

" ” ” " l
—@fa+ =) —U(p/'s + ¢"=) +E-ba—’;,=__v[w,.z,+?.”,l+g,,x,].
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Flimination of the pressure leads to

@ lf's + Ufsl + @ [ /1 + U] 4§ o Uz — Ul ]
+ 0" + U+ Uls e — Unir 2] = 9 [/ "+ 292 'z + 9 /a0 o+ 621,

The terms in UL, forming the product with other derivatives in x, can be
neglected.,

Two different cases will be studied here: /93
1) that of the laminar layer where

Ld
- i

U= Uo [1 -\ a; =iV Uo/V-t] and U'Uz = — Uo }] q a? % e—aiyV U./:-I,
{

2) that of the "stationary turbulent" layer whose field U(y) has been
defined above (Part I).

28, Reaction of the Laminar Boundary Layer to the Harmonic External
Perturbation in v’

Within the frame of the Blasius theory, no interface exists theoretically
between the laminar boundary layer and the exterior flow Uop.

Compared to the tangential velocity component U, as already emphasized, the

U - U ~ v
° , for y = 8. = 5.5 U# becomes so small that the question assumes
o

term
o

an entirely academic character.

This is not at all the same with respect to the normal component v.

28.1 Upper Border of the laminar Boundary lLayer

It is of some use to dwell on this item.

As is known, the pertaining theory stipulates first — over the approxima-
tions and hypotheses used — that the pressure be invariant in the boundary layer.
It then requires determination of an auxiliary stream function £(7) by means of
the well-known third-order equation ffﬁz + 2fﬁ3 = 03 three boundary conditions

are connected with this which, with

v

U, , 1 U, .,
/L, umves vl T,

are the following:
U@ =0 V@©=0  U(w)="U,

L

%, - .
S St Smanamtsais



We thus find
[a(o)=1, [m(0)=0
where ffj actually rejoins the asymptote 1 for T = 5.5, where 1 ~ £y = 0.005.
Let Ne be a value of T such that f{\ = 1 (for example, Mo = 5.5).
Let us put

() =1—[4 ()

where 61'](T\) is very small when T > To.

Since [9L

@ =\"radn +\ Q—edn=/@) +[n—ch =l +a1—2c

where fo represents £(No), AT = Mo, Ac = €(T) = oo

"

However, fﬁz = —Gﬁz, e = _eﬁ%. Then, the equation of the third order in
the domain N > To is written as

(o +0— N—¢e + 50) ey 4+ 2 e"p =0,
i.e., neglecting the terms of the second infinitesimal order,
€y 1
S = om0+l

or else

11- .3
Log e'w (1) = —3| (a— 7001 + 5| + Log A,

where A is a constant.

Thus,
" __[p_(, — )+"—t_l
e (n) = Ae L2774

so that we have

. IR §
€ (o) = Ae 2 ek n“‘]

or else

1 n—nt
. 5 | =) n—n)+ —5—2
() =c" (o) € l[ ° 2 ] ’
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whence, finally,

-.]— — . nt—n,
[ (0) = [T (n) - € 2[% nem Ty :I

v U
To study the development of V = -%—IV-——E— [ﬂfﬁ ~ £] for M > Ty, since
X

V(0) =0,
we must form

=5 [t—matn—nd + T

ne d , n "
Vastti—ndn = arman = i one .

However, fﬁﬁ(ﬂo) > 0. Consequently, this integral is not zero: It in-

creases constantly with increasing 1 so that, since V(7o) > O is nonzero, we
have
V (o) > V () > 0.

Although there is nothing that contradicts obtaining V(Mo) # 0, this is /95
not so for V() # O which (angularly) alters the orientation of the velocity at
y = @, in contrast to the initial data (and alters it even more than at T = To).

Thus, to avoid this contradiction, one is forced to limit the expansion of
T to a finite value Mo which, apparently, is arbitrary but - for the reasons
given above - must be fixed in the domain 5 < To < 6. (Prandtl gave a value of
5,2 and we took 5.5.) The minor discrepancies resulting from this must be at-
tributed to the computational uncertainties produced by the approximations used
in the theory, which latter nevertheless is quite efficient and faithful to
known facts, but can be so only under the condition that a limit Te is placed on
its application domain.

Thus, in the logical exploitation of the theory, one is forced to admit the
existence of an effective border of the laminar layer.

This digression wasg justified since we now must investigate the connectivity

conditions of applied external perturbations as well as the reaction of the
laminar boundary layer to these.

28.2 Fquations Defining Perturbation in the Laminar layer

Let there be a state of flow exterior to the laminar boundary layer such
that U = Up = const and let there be a harmonic perturbation whose stream func-
tion is

Yext =@ (W) [ (z, 1) + g (x, D),
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where f and g are pulsation functions @ with respect to x and Upt, while ¢ is a
function of the general form given above for the (stationary) perturbations,
9 = p1e™ + 6%’ (see Sect.25):

i%»locosm(z:——Uol), g = o c0s & (®— Uy

These respond to
/”x; -+ o2 /’ =, g’”xl -+ 3 g"-c = O, q)”y‘ — «? @ = 0,
and finally, to

/’l -+ Uo /'-‘t =0, gll + Uo .(],x =0 and 0"':*: -+ Uo 0"':s =0,
The general conditions such as (see Sect.25)
" ('t +Ug f'2) + o (Man + Ug f"'2) = 0

are satisfied; in particular, we have

gn—yz'=a2=—./_”."t_s
@ /

. ., . 0 du’ v’ dw’
[1.e., Cp;fgfxl + f::/atp = 0 which is e ( Sy e ) = =2 - = 0 and thus

reflects the conservation of rotation|.

At the interior of the laminar layer, for which the Blasius law will be /96

taken in the form of

o
U=1, [1 — >_: a e—«t\/EuJ’

we obta%n the following for the fundamental equation derived by Navier (see
Sect.27):

O e+ Ul'2) + @ [(Mat + Uf"ed — Uy f'a] + [0"a + Uges — U, g'z] =0,

i.e., first of a1l

Q,Uz (/'l + Uo /'::) -+ @ [/"x't + Uo ”’zi] + gmx‘t -+ Uo g”';- =0
or else

fe+TUefz=0, (a)
(14U g'2)" = 0.

Let us set
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<D(n)=2;a.'e‘“‘"" vi th n=\/%‘§y.
U,

U= [1—2 @) Uy =—T, 0" - vz

On the other hand, we obtain

@’1 2
R Y TR R YAy )

whence

LAY " _(D"I*U >__ (Dnz Uo
‘“/‘”’( 2= igle) =0 et =0 (B)

Equations (A) known as "time equations" will be satisfied if the solutions
f and g are expanded in x ~ Upt. with respect to x and t.

From egs.(B) it follows that f and g will be functions of x alone (at the
exclusion of y), in agreement with the expansion adopted for the perturbation

function
y@&pd=9 W -/@H+g&D

Q //2
in the single case in which 3 reduces to a constant relative to 7 (and thus

to y). This will also be the only case for which the problem can be solved.

However, 2(M) =‘§)a1e—a1n is derived directly from the function £(1) of /97

the laminar Blasius field over fﬁ(ﬂ) =1-2%(N)., Thus, this function is given.
It is then obvious that, with an expansion in three terms such as

oy = &, ocm=;,'iAa;=oT"(lie)

where ¢ is small, it becomes possible
to define the development of the Blasius function with respect to T

(and y);
to satisfy, to within terms of the second order in e? s the condition

Oz

L

= const a,’

(see Appendix 1), while still closely obeying the Blasius law, as in-
dicated in Diagram I of Section 21.7.

This means that the decomposition adopted for the stream function ¥ will
furnish a very approximate (but not exact) picture of the real perturbation. It
then becomes possible to put
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=[xt +38/, =gt +80

where 8f(x, t), 8g(x, t) are the variations of these functions appearing between
the outer and immer domain at the laminar boundary layer.

Since fext = [o cos a (x — U, ), Jext == fJgcos & (x — U,y [), it follows that

' " m _U '
Q" flexty + @ [Texte + 9" 3 fa + 9 8/ x""‘?“fv_—a%(/l-fcxs +3 /%) =0,

i.e.,
" - U v N i
"8 'z + 9(8/ I“““l‘ﬁ:sll) + [_‘?”11"""(0‘2 -+ ?%)‘?:I/’xext =0
Similarly,
8 4" —_EITVH:; 89— (m’ + E%) gl’oxc, =0

Since ¢ is independent of x (and of t), it is necessary that

” _IU 4 —U v
9'”‘ _ _8/ :9-:411 ;T%s/x_<f‘= -+ “7;‘%)/0)“,, —
9 - !’:r“;‘i'a['x -
is constant (with respect to x and y) or /98

3 ["’x:,_*_(kz_;;i;g%)s /’x + llzext<kz_';'l?p‘o—"“ 0‘2> = 0

v
and
@ = @, e + o, ek,
28.3 Solution
The equations in 6f and 8g can be solved only for a calculation in steps.
Thus, let us consider the origin xo of one of these., Let us execute the

step Ax; for the condition in 8f, expressing the variations of f.xt and the quan-
tities in x, we have

sf"u--i-s/'.sx(k“—;f;%%) +/oa.sina(xo—Uol)<&—? o + oo — J— o Uy .éff)

v T, _“‘v.’ro T,
+[oa’cosa(xo-—Uol)<a_,‘ ;%o—-i-a’—k’)Ax:O.
°
Let us put

U

p=y/@ e,

To
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The solution of 8f; will have the form
5[y = B[5F, eblar—ud — 3 F, e-8ds—0d] + b +2c Az

Fixing the time t under consideration, we can write
Sfar=0[0] 02 —3f ePbz] b+ 2cAz
Substituting this in the above general equation, we obtain

-—Aa:% —U—-—-sma(xo—U l)—-—u"cosa(xo—Uol)(E—U—" +a’-——k‘>ﬂ=0,
z, v,

La sin o (7p— Up £) (Z

— U
(k’-—-—a}vx‘:

°“v:x:

whence:
(k‘ >+/0asina(:co--—Uol) («,vx —-k=> 0,
2c<k’—a,vx> /oi ,;—x— x—smoc(‘co——UoI)

-—a‘cos«(xo—-Uol)ka‘ +a‘—k‘>€ 0,

whicr)l determines b and c¢ (constant within one step but variable from step to
Step .

Tt is immediately obvious that, if k® = &®, /99
i)
b= ———V—I———/oasma (@ — Uy ),
P p—
v xo
P Yo
2¢= lx"U foL——sma(ro-—U ) — a2 cos « (T, — U, [):]
o —a) —>
v,

Finally, the solution in 8g will be of similar appearance, characterized by

Sg‘na-—a,USgu-}-goocsma(x——Uo!) (oc’—*—a, ) 0,

with ,
G zexy = — Jo & 8in & (x — U, ).

Step by step, we then obtain
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_U _
3g” Ar’—'“: o89&-+go[:acsma(xo-—U°().<aﬂ+m‘!vUTO)
0

b= Uy a . — U,
-——Ax( —:—:— xosma(:co——Uol)—a’cosoc(xo—-Uol)-(u”+a,‘\ﬁ;’;>ﬂ=0,

whence

/ az —A:c —\/a LA
Oe =\ ol g 3o —8ge Y % )4 420 Az,
where b’ and ¢’ result from the general equation

— (0 F2e AR B L +gol:,a.sina(xo——Uo[) (a’—i—a ﬂ)
0

v I

“1

Y, W)
+Azx 3‘::: v T, % sin a (z, — U, l)—“zcos“(‘%_—U“o.(aa+a“rxo°_>(]=0,

so that
V=g, | asina(®,—Uyl) - — e,
= Uo
&y =
| v T
) o3 + u‘iﬁ_
2¢ =g, x—sma(xo-—Uol)—a’ cos & (g — Up ) + =5
-1 (1]
. e
For 8fy; and 8gs, we thus obtain the following expressions: /100

8¢'s =\/;;ﬁ;<301—893> + b +ax Z’v—x‘;—(sm + 8 72) +2c’}

and, for fy,,, and g/

ext?
['zexe = — Jo [asin a (xg— Uy 1) +Azxzatcosx (g—Upl) +..]
T = — fo[asina (@— Uy ) + Az a?cosa (@g— Uyl ...].

Finally, ¢ = cpleky + cpge'” » as demonstrated above.

-
28.), Boundary Conditiong

Inu' =@yf, v/ = ~pf; - g!, to make the boundary conditions appear, let
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us enter the following:
Wy=0)=0 v'(y=0=0 0(y=23 =ve(®, finally u'(y =23) = t'es (3)

uy=0=0 yields directly k(p,—eq) =0, whénceql = g

Tt is possible to take —?2'— as the common value (since ¢ forms a product

with f such that f;—l— will replace fip; without reducing the generality of the
reasoning) . 2

Then,
o = cosh &y, @'y = k sinh &y.
o' (g) = —cosh ky (b + B (3 fy— 8 o) = - fo w sin (g — Uy §
+AT 2+ B+ /) —fodcosu(to— Uy ]

- U ' .
_[\/m{—xg‘; Bg—38 gy + b — goasina(xy,— Uy )

v

~— U ]
+Ax “76%(391'*8-‘72) +2c’—g0a‘cosa(x°-—Uol)§].

Here, v/ = 0 yields

—[b+p@Lh—8f)— fousina(z,—U )]

- U , :
—[\/a: \,—5‘;-(801—809 +b -—go«sm«(xo-—Uol)] =0,

—[2c+pPQ/f, +8fa) — o cos a(z— U, O]
'_[;?‘%‘(8!]1 + 3 g2) +2c’—goa’COSa(x°—-Uol)] = 0.

V' (8) = V' (8) = (g + fo) [ 5in & (B — Uy ) + A & ad cos & (7o — Us ) .....]
will also furnish /101

- U
—coshksu»+.e<8/1—s/2>1—[\ “7@0:(301—302)+b’:l
= [y (1 —cosh & 8) asin « (x,— U, 0),

-—coshkS[2c+{3‘(8/+8/,)—[E?v—ti?°°(8gx+892) +2c’]
= [o (1 — cosh k 8) «? cos « (x,— U, 0).

By difference, we obtain
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—(coshks—1)[b +B(S/;—-S/,)—-/oasinat(xo—Uol)]
= (fo + o) @ sin « (T — U, 0,

—(coshk8—1)[2¢+L*(3f, + 3/ — foa® cos & (x,— Uy )]
= (fs + g0) &* cos & (2, — U, 0),

whence:

b+B@[—3f) ad 2e+@EL 431 iree, B fndd [

Similarly, it is easy to eliminate 8f; for determining 8gi and 8g= such that

—= U, .
b’ +\/°‘?v:£:) (8 9, —3 2) — Jo « sin « (To— Vg /)

= —|[b +5(S/x—SIZ)—'/O“Sin“(xo_Uol)]

1 .
=m[/o + go] & sin & (xg — Up O,
— U,
20 + (0 + 809 — o 005« (@ —TUs )
1

=coshks—1 (o + go) %3 Cos & (xo__. U, D).
We then obtain

v'(y) =(—:as){—‘:%%g;°_—1(c05hky——l) {wsina{@—Ug ) + Az atcosa(mg—Upgl)...]

=€?§fl—‘;—%‘8—g—o—_l'<°°5hky—l)ocsinoc(;c—.Uoi)'

So far as u’(y) is concerned, its expression reads

u' (y) = ksinhky [[ (g—Uo ) + Az 'z (Tg—Ug ) ...]
= ksinh ky . [ (x—TU, ),

which can be written directly since 8,” = O relative to f] and gt

u () = E—o‘s/lz—lj:ag_—o—‘f [cos & (x — U, )+ const] k sinh ky.
In fact, according to the expression of v’/(y) = -[cosh ky ¢ £5 + g 1, we have
- fo+ 0 .
[e@—Uyl) = —————————cosl‘;ksi_ 7o sin a (z—Up )
103
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and

fz—U, 0 =Fs{%”_{7cosu(x-—uot) + const.

The constant incorporates the integration constant 8fs of the integration
of
8/=58/'x--dx+8/3.

This will make it possible to satisfy any initial condition with respect to x
concerning u’(y).

28,5 Determination of k

The constant k is still indeterminate.

Let us note that the expressions of ¢ and f, relative to the domain in-
terior to the boundary layer, are as follows:

¢ = cosh ky,
with
j s

' (S 0+go : — /0 ’

/x‘l‘s/x— musma(x—-Uol)._ms—:—i./rm
and

Yo
” " _ ot g : T+1
/xs+8/ ey cosh_ks—_—-—l-a@ Smoc(:c——Uol) =_ml . “2//%“'

However, we were forced to choose a value 8 for the thickness of the laminar

boundary layer (5 = 5,54 ;; >, fixing an extent limited to the application do-
0

main of the Blasius theory (see Sect.28.1 above). This choice had been such

that, for y 2 8, the value of calculated by this theory just about reaches

unity. o

This means that, in y = 8, a connection must exist between the interior and
the exterior solution and that the connectivity conditions must be satisfied ir—
respective of the selected y > 8, since any other value 8’ > & could have been
assigned to 8 (obviously, within the frame of the agreed approximations), spe-
c¢ifically in so far as the rotations are concerned.

Let us return to the fundamental condition, referring to the exterior do- /103

mein., This condition was written in the form (see Sect.28.2)
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[e" [z + o /mi"]uxt =0
(representing the law of conservation of rotations) and was satisfied for

[(?L‘:] _ /”’-t’:’J .
=—| 5 = %
@ _Jext /z ext

In the interior domain, according to what has been demonstrated above, we
have

Doy
+
[e= /’fext -+ 8/'2 = 4 /I-Texl, 'm._—x and ¢ = cosh ky'
Let us form
(?Il”’ /”’Ib
2l d
e o [z

, These ratios™ will satisfy the above connectivity condition if and only if
k= a”,

This fixes the value of the constant k.

8.6 Expressions of the Interior Perturbation Components

Next, the values to be retained for u’(y) and v’'(y) can be written down:

fo + %o

u’ (yv x) = « sinh « J [m

cos « (x— Uy ) + consgl'

coshay—1

V@) = (o + 90) sooa 51

« sin o (z — U, .

Thus, along the border 8 at the interior of the boundary layer, we have

. « sinli « § . .
Ui (8) = cosha s —1 [{fo + ¢o) €05 & (x — Uy O+ const],

Viat (8) = (/o -+ go) @ sin « (.'T: —_— UO l).

Consequently, an external perturbation in Vext = Foe @ 89) o5 a(x - Ut ),
which tends to zero as y = «, has the following (exterior) velocity components
in 6:

Vext 8) = — Ty usina (x— U, ),

Wext @) =—=u FO COS « (x -— Uo l)x
* Here, 8, has always been assumed as negligible compared with £], f;’; .
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Connectedness of the exterior and interior components in u’ along 8, will /10J,
be ensured if

sinh « 8§
—aTF,cos a (— Uy &) = a-(Jy + o) 5551{730‘“:1‘ cos « (& — U, ).

It follows then

Fooy— _Sinhad .
o= — (o + g")cosh ad—1°
whence
U’cxt (8) = FO & Sin o (x —_— UO l) = (/0 + go) o sin o (x_ U0 l) H:}%;_i_.l'
whereas

Vint ) = (fo + go) & sin & (@ — U, )).

So as to have a connectivity exist between the velocity components v’ at
the exterior and at the interior of the layer along 8, it is necessary to sup-
plement the external perturbation by a second perturbation in Av) ,:

Av'ext = Vysin a (x — Uy 0,

such that

, sinh « §
Vo + Goshas —1 o T %) &= (o + g0)

whence
1 4+ sinh « 8 — cosh « &

cosh a & — 1

Vg = —a(fy + g5

Tt is necessary that no component in u’ be attached to this component in Vo
(meaning that it should be of the type investigated in Sect.26).

This also means that the laminar boundary layer responds to such a harmonic
perturbation in vg__, (only) by an internal perturbation of the above-defined

type which, again at the interior, produces the occurrence of a complementary
external perturbation (in vl ., and ul,,) which rapidly decays with increasing y
beyond 8.

29, Limit to the Extension of the laminar Domain

Let us return to the Navier-Stokes equations with perturbations u’, v/ cal~-
culated above for the laminar boundary layer. These equations are as follows:

2w, AU 1
0! +Ub:¢:+v ay+p z " At
v ' 1 dp o
1+U x+P'S—Q—V-A 0,
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where Lﬂlo

Ue )
U =1, [1— W e '\/'—‘"J, U = (e — c-au) « [,

Ld
i

Finally,

V= — (etar + c-) f', — /™

where f and g satisfy the above-mentioned general conditions.

Thus,
du Y U \ "“‘"\/‘%?"
W+U—b—x—+”b—y=‘?u/l+uo 1""2‘“6 )9”/’
i

U,
‘—UolZﬂi i \/v_::(q’/'z: + 9%

’ ! ’ -——a.‘ /-“:all ! ! U (2 '
=0y ('t + Uy [z “‘Uoz:“i'c v [?u/z‘f‘“l\/;l(‘?/z‘i‘gxr)]

—a /%v u.
=—1UU, 2 a;e \ [a (e — e-w) f'y 4+ o \/;—;: (e + e~a) f'2 + ¢'x }:l.
i
Similarly,
Y bvl_ . ” —_ :L‘;U
Yl + Uﬂ= — (o ["xt + 9" x%) —U, g 1‘—'2:‘ aie ‘\/A ; CYEES 9"2)

=—¢ (st + Uo/["2) —(¢"at + Uo ¢"x1) + UoZ a; eﬂ‘\/;” (¢ /"s + 9"
{

Uy

—\/ =y
= U, 2 a; e b [(exw. + e~ow) ["z2 4- gz
i

)
{atas A /T}y N

These forms cause the occurrence of terms in e

-— vo
+ e{a 1N }y.

When y increases from O to 8, the first exponential will decrease (very
rapidly), while the second exponential which decreases in a similar manner at

107



Uo 3 - - Uo 3 ) -
o <oy will increase rapidly at o >/VfG§T * &3, which will be again the
dp’ dp’
same for N P .
ox oy
29.1 Consegquences /106

[ Uo
Let x. be the value of x which cancels o - oy P such that

2
e % U
? e az V’

where @y = @; (1 - €), in principle, is the smallest of the coefficients o; taken
into consideration. In fact, @; = a;.

Thus, as soon as is positive and not extremely small, substantial

Xe
(and even rapidly increasing) pressure gradients will appear in the thickness of
the boundary layer.

This means that the radii of curvature of the particle trajectories will
no longer be large so that the Blasius hypothesls no longer is applicable. Thus,
the Blasius solution cannot extend beyond x = x., and only the second solution
of the Navier-Stokes equations studied in Part I of this paper under the designa-
tion of "stationary turbulent" solution will remain valid. For this, no hy-
pothesis has been established with respect to the pressure gradients or the tra-
jectory curvatures™.

Thus, it is necessary that at x. - or at least in its immediate vicinity -
the laminar state stops existing and that a second state, comnnected with it,
takes its place.

It will be noted that this change of state is correlated with the existence
of an external nonstationary perturbation which induces a response of the laminar
layer of the same pulsation @; its combination with the Uj, law of the Blasius
field leads to a divergence of the pressure gradients (with respect to y), start—
ing from a well-defined critical segment x. which depends directly on the pulsa-
tion o§ the external perturbation (and thus on its wavelength or on its fre-
quency).

later in the text (in Sect.34.1l), we will determine the response of the
"stationary turbulent" boundary layer to the existence of a harmonic external
perturbation. The calculation is simpler than ~ but similar to - that carried
out for the laminar boundary layer; no source for divergence of the pressure

* The two Navier—Stokes equations were taken into consideration, between which
the pressure is eliminated; thus, no hypothesis on these equations is formulated,
and also no hypothesis on the smallness of the trajectory curvature radii.
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gradients and for a limitation of extension exist here.

No matter how this might be, the following critical Reynolds number cor—
responds to xc:

which is higher the smaller @ and Vv and the larger Up. Here, Uo® character~ /107

izes the pulsation of the external perturbation, whose frequency and wavelength
are as follows:

2% U, «
__ 2 \ '}
X_N_ « ' N= I
This yields
o« WU
mc=4ﬁ2. v
AUo . .
where R\ = thus is the parameter determining R..

Here, @; is the expansion factor representing the Blasius velocity profile:

U = Uy [1 — e-9978 4 735, — 725, cosh 00375« 4 }]
with

= y\/:j:;, _o—(-" = (.378.

Let us define the orders of magnitude of A <§gd N) to which various pos-
sible values of R, correspond, when v = 1).), X 10 = MKS:

R, 0.3 . 108

1 -10¢ 2. 108
A(m 4.5.10-3 2 .10~ .
For U, = 29 m/sec g ") 5.10- 82 .10  11.2.10-3
\ N (cps) 6.6 . 103 3.5 . 109 2.5.10%
For U, = 87 m/sec % A (m) 1.5.10-3 2,75 . 103 3.9.10-%
N (cps) 58. 109 30108 21 . 109,

The wavelengths are expressed in millimeters, and the frequencies in kilo-
cycles or tens of kilocycles.
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CHAPTER V /108

PROPAGATION OF A PERTURBATION IN u’, INTERIOR TO
THE BOUNDARY LAYER

30. Perturbation u’ Interior to the Boundary Layer

Since the fundamental velocity field is of the Blasius type, such that

U —
—aiy\/ = Uo
Unae — N \/Wc " R JU, f‘“i”\/“
~U, 11 hy a;e , UUQN_U°\ aia‘zv;e v.c,
i

i

let us here consider a nonstationary perturbation stream function u’, v’:
b=o@W-/@D+g @0
The fundamental condition is written in the form (see Sect.27):
" (e + U f2) + 0 (Men + U [T —Uye f'2) + (0722t + U g"s— Uy ¢'2)
=Vl "y + 2 " 9" + @ [ an g1,
and leads here to

Yo
—aw\/: 1 e
U°<1—Ea‘e "3)[?,”: =+ 9 /["e + 9"

i

Uo

U -—4‘1’ e ' ! I "

+U°Eal'd}‘v—;e w(‘?/’x’*‘f/-t)+(?’U‘fl+?/llx“+g xi
i

=y [/ QIHIU4 + 2 q2”"! Ill‘t2 + (? /llllx’ + gIIII:‘].
This condition is decomposed into so-called "time" relations

('t + U la) + o (Mae + Us [23) + §"=n + Uy g7
=v[f "y + 2 2z 0"ye + @ [ e + 9"

and into so-called "space! relations /109

. _q,.,,\/ia - , U o -
age v l_?’”a /': + Q\/M.’C’ —_ afﬁ/':) + gmﬁ —_ Cl-?;_;:g’x =0,

We will then return to the three-term expansion, used previously, such that

1S S

131 L _ _ _
_(1)l =consta} (wherew; = «, %2 = o (1 F ¢), c small),

.
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so that, as above, we will have to solve the following system of equations
(since @; can no longer be distinguished from o; , we do not wish - in what fol-
lows ~ to complicate the writing by using the vineulum oy = @y ).

The above conditions must be resolved into conditions commected with y and
into conditions independent of y. For the time relations, we have

d
S ol ] F Us [0 /s + @ /"l =v[f 40 + 2" [ + o[ (a)
and
? ” L 11 s
379 + U 9" = v g'""an. (A%)
For the space relations, we obtain
¢"w ' +<?</ x*'—“:vt/'> (B)
and
U
o — 2 e =0 ()

Since ¢ is a function of y alone, eq.(B) of the second order in ¢(y) will

furnish
v e—al,
—— = e __,_E__‘ — 1\-2'

? [z

where k is a constant with respect to x as well as to y; for f, we then obtain
the following equation of the second order in f]:

or e 108 — 2 2) =,

31. Study of First Approximation /110

Iet us investigate f about an arbitrary but particularized value x = x,,
t = ty, at weak variations Ax, At.

In this step-by-step procedure, in accordance with the formation of k, the
expression B? = of _3%_ k2 will be considered as constant in first approxima-
o

tion. The solution f! will have the form

'z = B (f1ePar — [3¢-PA7)



and
[=/[ichar o [, e-BAx

where f,, f;, f3 are functions of xo, ty, and At.

In the same manner, we obtain

A \
U, < ot o Ax —\/a-t—’ ax
= 1 =0 ¥ )
Jx \/a, a7, g€ —_ ,

Jae

U,
\/a(‘G?: Ax — a‘t.UL Ax

+ g e

g=mne + g3

Let us go back to the time equation in g. For the terms in g;, we obtain

U, . U, U
“liﬁi[g’lz‘{“Uo\/“l‘ v_xo;ﬂl—‘v I Ot?v_::;:] = (),

i.e.,
\ fap Pl 124 [ aple — Uo
_ —s a“m (1 o oy )Al Uy a";‘r— At
g = ), € 220, ¢€
Similarly,
w\/ a‘zvﬂ;—m
Jo= J2.€

and, finally,
93 = Jae

Here, 81, s 83,5 83, are constants so that we have

—

U Us
aii—(Ar—u,Al) —\/ ai - (dr—u.Al)
9220, e\/ v +pe VO + fae
Simultaneously,

9= Q,ek" + 5 e,

Iet us enter these forms in the time equation (A). Since this is written as

/111
a ” L] " 1 m e » L4 1
2ila"el + o [ + U (@urf's +917) =, U 9""us + 26 ["xs 0 /") | = 0

the following relation will be attached to each exponential e**¥
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%k”’—Ulok‘ o+ gl (B + 19) €682 - [y (8% + &) b

U o (8 90— [y 48 ) embive— - |, (184 B 8 [, (8 Bre-9e} | =0,

i.e.,
k2 b3
P+ fiUop| 1— 5 S5 B =g,
so that
—v. { B (kY ot
h=h.e ¢ fi, e-veBal;
k3 - @2
Fu—hUes| 1+ S ] =0,
so that
Vo § B — ('K [ AL
,' — /%e I Ue } o I?u e‘u.BAl;
v
Fa— kel = 0.
so that

v

‘At
/a = fa. e &2 fs,,

where flo’ fgc » T3 are constants with respect to Ax, At (but dependent on the
step-by-step origin conditions, i.e., on xg, to)-

Consequently, the general expression of f will be, with

= \/°‘l——‘k2

[ \V 2k ax—ueal)

/ = /10 e * + Iz. e

st | ax—v, 1—2%——1-——- "
\ / a;‘%.—k‘ /

—\/ a2tk (Ar—vAl) | ag —Al Ykt
VX Y,
€ + /3e €

=fi,e
_ / Vo s agt 1
a;‘“a k* | Ax—u, 1+I?‘;'. At
\/u k) A ék‘dl
+ lzo € : + I3l [
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31.1 Boundary Conditions /112

"Here, the boundary conditions with respect to y will be those referring to
the wall y = 0, for which v/(0) = O and, in general, u’(0) = O.

In y = 6, the exterior flow may be affected indirectly by perturbations
inside the boundary layer. It would be sufficient to establish simply that a
perturbation exists in the exterior flow whose boundary conditions along the
boundary & ensure comnectivity with the internal perturbation. At y = =, the
external perturbation would vanish. On the basis of the solutions of the family
of those studied in Sections 24, 25, and 26, it is easy to obtain the means for
defining such a perturbation. All this merely is to prove that we can disregard
the conditions at the boundary of the internal perturbation.

So as to have u(0) be zero, let us set ¢ =y = —%— (since ¢; and g
always form a product with f, the generality of the solution is not impaired).
Hence,
u' (y) = [k sinh ky, V() = —frcoshky —g's
Here, v/{0) = 0 leads to f] + gf = O.

Iet us also put AX = Ax - Uy At and let us expand the exponentials

+ / a;’yf—k‘(AI—.‘UuAl) T
oV gli\/ay%—kmsx.

/ U - .
If B =Vof —5~ k° is real, all coefficients £ , £, , g1, , 8, will also

o —

be real. However, if B is imaginary, then B =:8, f = f’lx‘o + Zfi’o This is

S
3

the same for f; (and, by homogeneity, fa, = 13,

In expanded form, the condition v/(0) = O reads as follows:

fe+9z= [ g (fro — fa) B + (91— 920) \/“? ‘%90

+Ax;(/1.+/e.,) B + (g1, +92°)°‘?\%0;” =0

If B is real, it is necessary that

ho=ls =0, 5.==—/I .U
If B = 2B, with B being real,

11,




PR =H (= 1420 — (% — [#+%2) +<m.—g«.>\/ af —-—§

FAXPBEE 4P = (ot 120) + 0+ o) 2 | ] =0

¢

¢ e - Bt 7 o :
will lead to ﬁo 2, f}_ﬁ' 5 since f and f! are real; consequently, /113

. —“lvx k’——oc}‘;%
- G2, =2/ * \ s .’]ln‘*‘gz.: ‘T"Z/*].-
v} —0

a
i -":o iz,
Thus, 1t is easy to calculate g and g as soon as fl*o and f are known.

Then, the following expression will be obtained for f:

Us v
- a At — kAl
[=1[2/*,cos B Bz —TUy Al —2 frr, sinB(Ax—TU,AD] e = +/*a°e" ,
= ,\/2 Uo . .
where B = Vk® - & v 1S 2 function of xg4.
Iet us put tan & = —2—:
10
** x”°A gy
[= ZCOS(I}s‘n{B(Ax—U A)—Dte + [*3, &%

Since the origin of time is arbitrary, it is always possible to select this
origin, for the step under consideration, such that the new time will be ex~

®

pressed with respect to the first time by At’ = At + —
BUo

Let us then put

—a"l 2z vD

1, = —_ —K.
ho=—_"lop g, foo=[*s, &  UoB,
Hence,
Uo

— 27 sinE . R0 Ulckw'
f fusinBAz—TU,Al)e T fae

12° Y — k"Al' h
= /l (ea(dx—UoAl) + e—¢ (A.t—Uu.\l')) e e -+ /3' Yo

Since B = ZE, this form is the same as that referring to the real case B,
except that, to each step, a particular origin of time must correspond.
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Thus, as long as a step-by-step numerical calculation is not required, we
can use a contracted form of writing, even for the imaginary case p. We will
have need of this in studying the second approximation.

31.2 Propagation /1L
Iet us now investigate the propagation conditions.

First case:

Tt is assumed that g is real, i.e.,
2
W23 >0 “f o

or Ty Lk —L =7,
X 0 < )

In that case, the coefficient flo is connected with a perturbation whose
velocity of propagation reads

X — & 1 B
&, =1, z —U— .
\/a}’—"—-—-kz
EN

Similarly, for fa, 5
3
(:Ia = U0 [1 +9L‘I -——.~_1__.-—————'_.].
Ty \/ U
P —2 3
tva,

Here, %, is constantly positive, while ¥, vanishes for

lceo,

Since

E?-:l <“"B>‘. .Vﬁ !
x;‘l x(‘: lvxc Uo i

where x, 1s the abscissa of the critical segment defined in Section 29.1, it
follows that®

2
047 . UO

# let us recall that x, = 7 o— 1is the abscissa where the laminar Blasius

solution no longer is applicable if, in the exterior flow,there exists a per-
turbation of pulsation olUg.
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or

whose roots are x,, x; such that /115

so that

In this form, it appears that }321 is directly adjacent to (and inferior
(]

to) —5-, while 22 is directly adjacent to zero.
c
\/a‘ ;—5 — = \/ 2 — k3 vanishes for ';—" = fo = ;:: Thus, :‘:Tl :"
C o €
This discussion indicates that %, is > O for x; < x;, < x,, while %, is < O
for x exterior to xyxp. Thus,
for 0 < x < xz and %x; < X < X,
Evolution of the perturbation f; in the real
—_ ' I pulsation exponential will propagate up-
0 1, M stream, whereas it will propa-
gate downstream for x, < x <
| Perturbation in ‘Harmonic perturbation <Xy (Fig.22).
real exponential Is. PUp=U, \/Ki-az_a
(puts. Buor V") Secord case:
Fig.22 Let k be real and B imagi-
nary:
U. s
a}\—’?‘:—-—k’<o, T > T =g U°.
Then, f is written in the form
\/k—a;l °(Ax—~u°Al) \/ RN ;'~—(Az—u.Al)1 a2 At 2 ktat
[= [/1 /z.,c de e .
Here, f; and f are necessarily real (just as o).
As indicated above, f can always be expressed by (see Sect.31.l) /116



e 2 hrat

U, +a;t= A
/=2/1°c05\/1\'3——a}‘;—;—o(Ax——UoAl)-e o 4 30"

Thus, for x, > X, (let us recall that ¥, cancels the radical), the perturbation
is harmonic and propagates downstream at a velocity Ug.

Upstream of X,, the perturbation is a real exponential and propagates up-
stream up to x; which it cannot overtake (since, between x; and x,, this per-
turbation would propagate downstream). Condensation takes place in x; (which
is very close to x(j. The exponential, bound to f;, reduces to a constant which
can only be zero since a perturbation, in the finite stationary jog, cannot be
reconciled with the Navier~-Stokes equations.

Tt should be noted here that the solution in which B is imaginary (second
case) induces the appearance of a pulsation of a given value moll, (with respect
to time) at a point x = x5 such that

. U U
\'/kz—a“——(’:ma, where ]\-2___”12“2_:“}1_0 = ad. =,
v, vy

so that

Later in the text, we will have to set xz = x, since x, is the critical point
defined in Section 29.1 where the laminar state is unable to exist in the
presence of an external perturbation of pulsation ol (m=1). Tt follows from
this that the perturbation which, in xz3 = X,, will have a pulsation moU, is

characterized by a constant k such that .
4« U
=Y TE__ma
whence

K= (m® + 1) o,

Then, the point X, attached to the pulsation mal, where 8 becomes imaginary
will be such that

. U U - 1
a“;—i = (m® + 1) «® = (m* 4 1) VI xco whence Z, = T * T
Specifically, for m = 1, we obtain X, = };" and, for m = 0, X5 = X,

The points x; where the velocity of propagation¥, vanishes, will always
be given by the above-indicated relations so that
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32. Study of the Second Approximation /117

U
The study of the first approximation, where of -—%%— had been assumed as

)
constant in each integration step, can be supplemented by that of a second ap-
Uo
vx3
is taken into consideration. Appendix TITI gives the corresponding developments,
indicating that the propagation characteristics demonstrated for the first ap-
proximation are encountered also in the second. Finally, the complementary

terms of the second approximation can be neglected for those of the first ap-
proximation.

Ax

proximation in which, while making a step Ax from x,, the variation -af'f

33. Integration by Parts; Calculation of the Mean and
Harmonic Component Terms

The above study, described in Section 31.1, led to a solution in which the
function f(x, t) of the perturbation stream function was expanded in narrow
domains Ax, about each segment x5, in the form of

[ (@0 + A xg) == 2F, sin [B (x) (A2, — U, lo) — O] + f30
[a(@y + Axy) = 2710 B (z,) cos [B (zp) (A Zy — Uy f)) — D).

where t, is some determined instant:

B (2) =\/k"‘-—a}%‘:=k\/l—g

[since X is defined by B(X) = 0J.

Here, f; , f3, and thus also ¢ are constants in the small narrow domain Axg
in question; ‘however, they develop slowly from domain to domain about xg,
Xy, eoey €bc. Consequemntly, these are unknown functions of x which must be de-
termined at least approximately.

For this, we will stipulate that comtinuity of f(x) and of its derivative
exist when passing from one domain to the other, after which we will attempt to
carry out an approximate integration by parts of the problem.

Thus, by setting xo + Ax, = X3, the above-mentioned solution will be
identified with the solution of the same form written in x; (where Ax; = 0) but
for which

Hi@) =1 @) + /@) A,
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which will be written as

ho= 71. + 7'1,, <A xg.
Similarly,

fo= it oy %0 O, =0+, Axy By =Bo + Plo, A%
whence

[ (o) + B2y ['s (26) 22 2 (o, 4[5, B %) sin [Bo + B, 82) (— Us lo) — (Do + @'y, & 7))
+[a,+/’ao,'Axo with

['z(xg) = 271,Eo cos By (— Uy fp) — D},

[2 (%) + A%y« ["22 () =2 2.(7;. =+ 771., Ax) @ + E’oz Azg)cos [(3, + ﬁlo, Azy)
X (—Uglg) — (D + @'+ A z,)]

with

"t (Tg) = — 271053 sin [-50 (—Ugl) — D).

By identifying (and linearizing) with respect to the variations in Ax,, we
readily obtain™

[E’o,‘Uo L+ &, + Bol - 2 /_x.,cos (Bo (— Usty) — ] =2 7’1._., sin [Bo (— U L) — @] + [ae

2TsyBosin [Bo (— Jo ) — O] - [By + B, (U o) + @]

=2 [/ B+ /:o B'a) cos [3 (— U lg) — o).
The second equation is satisfied if we have

T'n, -Eo +E’0'719 =0 and E—o +-§"o,, Ugly + ‘Dlo, =\,

whence _
[ _ By,
Tia B
il.e.,
71., ='Eg: =_'C—_ (C is a constant).
‘ k\/l—f
x
Hence, we also obtain
¢'°x. = [EIO: Usty + Bol,
i.e.,

b3

same holds for cos.
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Tt will be noted that sin [(Bo *+ Bd 0xo)(-Upto) = (85 + 89, A%,)]
sin [Eo (-UOtO) - @o] + AXO ¢ [E-le ("'Uoto) - @oli cos ['B-o (‘-Uoto) - QO]' The
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D @) — D (7) =—Uglok[\/l—-—_z—\/l—%]—-—kS:\ l—édx.

To exploit the first equation, it should be mentioned that it is always
possible to make a choice of a time origin or - which comes to the same - of a
time t, such that

D, +Eo - (U lo) =0,

It is noted first that, in the step x; - X, where ff = O, the quantity f; 13
€p a, s qu J

X
is a constant. In addition, at some time t, the term f(xy, t) will differ from
(%9, to) = f3 by the nonstationary term

—_ 271 (o) sin [_E (o) Up 7]

when setting T =t - t,. Here it is a question of a term oscillating harmonical-
ly about f(x,, to)s We will denote f(xy, ty) by f, (%x5) to indicate that a time
average is ihvolved here.

We can repeat the preceding reasoning, starting from the point x; . How-
ever, to demonstrate the mean value f (x?%, it is necessary to select a new
time t; such that ~ as before -

@ () +B (@) Ugty =0.

To pass from f, (x5) to f,(x,), it is thus necessary to calculate - starting with
the time t, - a first variation of f(x,, to) with Axy = x - X, namely

A/ @ =27 (@) B @) Az,

and then a second variation, passing from the time t, to the time %, :
|8af @) =27 @) - B @) | —Us (4 — 1)},
We should note here that
B@) (—Uply=+0(@)

and
B @) (— Upty) = B (@) 2%,
B (o)

Thus, to obtain f, (x;), it is necessary to increase f, (x,) by

A fm @ [ =27, () - B (@) - Az +2; @) B (2) [M—M]

B@) B@)

On replacing 2f; (x) = B(x) by its value of
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we obtain, from x, to x,,

l Afm @) 9@ (%)J

Az, .
[ R T

Similarly, from x, to x,,
@ (xz) @ (xx)]

| A fm @[5 = 2C[A.r, +E( o F )

and so on.

term-by-term addition, we will obtain the variation of the time average

of f(x) from x, to x, namely

M_M]

[A/,,.(:c)j:'=2(l[x——xo+__ pt .
B@ B (z0)

If, for the origin segment x,, we select the segment X such that B(X) =

where we necessarily have £(X) 2 O (no station

where Eo represents the time such that

D@ -
@ Uole
Since L
z
@ (@) S-\/l—“’“’ _
B (@) / z ¢
Vi—z

fp (x) will ve given by

/m(@)-=lAfm(x)[£'=2C R L A —
=

If the value of f,(x) is imposed in a segment x,, then the constant
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constant and finite perturba-
tion superimposed on the laminar field can exist), we finally obtain

SR [V |

C will

o e -
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result and one can simply calculate, in each segment x, X < x < x,, a function

1 ( = ) such that
[+

Wi

T—x— —=
2\ _ fm (@) \/1—§
(-8

Te)  fm (@) xe T =
_ S; \/l—gdx

Te— 2 —*

The accompanying table gives an example of the development of p for
= 0.55 x,.

1—.

0.450

0.125

f— 0.55 0.60 0.70 0.90
(
z
z— 0 0.050 0.150 0.350
N x
T — 5 g 1 ——5 dz
7 — 0 0.025 0.055 0.105
Te 1 —E
N .
n (xT) 0 0.20 0.44 0.84

The expression for the nonstationary component will be

27F () sin B (%) Uy v = — 2¢ _sink\/l—«':c.Uo'r,
€T d
k 1—;

using the notation T defined at the beginning of this Section.

3L4. Perturbation in u’ Interior to the "Turbulent"
Boundary layer

We will limit the investigation of this case to the first approximation
of f.

123
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The fundamental condition (derived by Navier, see Sect.27)
('t +Ul'2) + o (I"et + ["2U) + (9" + Ug"s) — U2 (o ['2 + ¢'2)
=V [/ ?,IIIUQ + 2 ¢,”.l/’ 2 + ? /I'llx1 + gll’lx‘]

w Ug~-X . . .
where U = °—§—— y + X + u(y) will become, in this case, neglecting u(y) which

is small with respect to the other terms and observing that X = const,
. U,—X - —
P [/ll +(—LE'._ y+ X) /Iu:] + (Pl [Men + (H"—E—}—(y -+ X) '”,,a:]

+[ o+ (B2 + X) g% |

ay [?""Uq/ -+ 9 ¢fr",_/1xz + @ /l!llz‘ + g ""::4]-

Separating the independent terms of y from those containing this quantity /122
as factor, we obtain

e ('t +X/'2) F o ("en A+ Xf"a) + §"zu + X g7
=y [91111"11 + 2 Q”Ua /,zt + 9 /IIII=4 + g'll':4]’

which is the time equation, as well as

'z + @[T + ¢ =0,

which is the space equation.

The first equation, taking the second eguation into consideration, can also
be written in the form

d
SO 0 e 0] =V [+ 2T 9 [ e+ e,

From the space equation, since ¢ is independent of x, we can derive

"y s

= e = L3
S /Iz k3 const,
i.e.
? \'P'yi—ka @ = 0 and /Mzs + k3 ': = (.
Finally,
gmx’ = 0'
whence

o= Quel +guehy, [y = Tk[f, ehs— f, e-iz],

12,

I
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Here, the integration is carried out directly rather than by parts.

Let us now return to the time equation. The derivatives of ¢ are of even

order such that q,e¥¥ + @,e™*¥ can be factorized. For the term in %‘“‘ it
follows that

[y (R—1) =v[kt—213. k3 4 K] f,,
i.e., 0 = O which means that fyf (t), f, (t) can be arbitrary quantities. The
same holds for £ , f, (t) with respect to ¢ L
[Na.turally, this is true only within the frame of the admitted approxima-
tion, with u(y) beln% small. However, it follows from this that the conditions
t

superimposed on f) ( f; (t) are very weak and that these quantities will de-
velop only slowly.]

Thus if, in an arbitrary segment x., the quantities f; and f, obey certain
laws with respect to time, these laws will be conservative to values of x > x,
relative to the "turbulent" layer.

It is also necessary to allow for
a ' 141 1 0
——bigzq._—-vg x4 g z3 =2 U,

The second equation yields /123
gx2= g (),
where g, is constant with respect to x.
From the first equation we then obtain

go‘=0'

Thus, go is a constant and gf = gox + g, (t). The boundary conditions with re-
spect to y will always be those concerning the wall

u' (0) =0,
i.e.,

1
P2 = Q; =§ and v (O) =0,

However,
o = — [tk (J, ks — [, e-ks) cosh ky + go 2 + g, D1,
u' = [(f, e*= + [y k= + [) k sinh ky].
If several perturbations k are present, the condition v/(0) = 0 will lead to
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Y
290k=0' %:glk=on }k_‘zl‘/lg:'-o
k

(since f, = f; so that v’ can be real).

3L.1 Reaction of the WTurbulent! layer to an Imposed
FExternal Perturbation (in v’)

It will be noted that the above expressions of v’, u’ are applicable to the
perturbation inside the Wstationary turbulent! layer which forms in response to
an imposed external perturbation v§ sinao (x - Uyt) of the type studied in the

preceding Chapter (Sect.28).

However, the boundary conditions referring to thls case must first be
formulated.

Primarily, so that u’v’/ be real, it is necessary that f; = f,, i.e.,
V' = —[—2kf, sin kx cosh ky + gox + g,], u' =2, cos kz+ k sinh ky,
where u’(0) = 0 is thus satisfied. Here, v/(0) = 0 imposes
—2kfisinkz + gox 4+ g, =0.

Consequently, we obtain
u' (8) = 2f,coskx. ksinh k8 =2, cosk (x— U, x)+ k sinh k3§,
V() = —[—24kf,sinkz-cosh k8 + gz + g,] = 2k [, sin k (— U, ) (cosh k3 — 1),
For the connectivity along y = &, at an external perturbation of the
general type (see Sect.25, 26, 28) such as

Uy = — a Fy e=2-3 cos « (x — U, 1),

Vet = — Fy e-2w-8) o sin & (x — Uy £) + vy sin « (g — Uy O),

it is necessary that

— — FO
k=e  2h=—gmnks

whence

coshad —1 ,

—Foe—my— = —Fox + %
so that

T = _‘S.ilhas r 1
“7_’“"01—(coshas-—siﬁhasy 2hee="Vo' o —sinhas —1°

1%

/12
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As in the case of a Jaminar boundary layer, the reaction of the "turbulent®
layer will include the appearance of a harmonic internal perturbatlon and that
of a secgndary external perturbation (tending rapidly to zero for y increasing
beyond &

However, no limiting condition occurs here that might lead to impossibili-
ties or contradictions with the approximations established on the basis of the
calculation, i.e., to a limitation of the extent of the obtained solution. (No
limiting hypothesis as to pressure. In addition, the terms in U’2 of the perma-
nent flow are very weak and do not lead to exponentials that dlverge from Y.)
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CHAPTER VI /125

APPLICATION TO THE CONNECTION BETWEEN TURBULENT AND
LAMINAR STATES; TRANSITION

35. General Remarks

We will attempt here to make use of the above-obtained results for defining
the phenomena connected with the fact that the laminar state stops being possible
starting from a critical segment x,, as soon as a source of perturbations exists
in the ambient medium.

Iet usrecallthat x, had been defined by the investigations in Chapter IV
(Sect .29) concerning the action of an external harmonic perturbation applied in
v/, with a pulsation of oU, (with respect to time). It was demonstrated there
that this perturbation caused the appearance, in the laminar boundary layer, of
a corresponding perturbation in v’/ (and in rotations w’) which was harmonic and

of Y

had a pulsation of olU, and that, in x, = —5— * ——, the invariance of pressure
o

characteristic for the laminar state no longer was able to exist.

This property is responsible for the fact that the laminar Blasius state
can no longer be maintained and that it becomes necessary to pass to a different-
state constituting a second solution of the Navier-Stokes equations which had
been derived in Part I under the designation of M"stationary turbulent! state,
indicating there that the definition of a time average was involved.

The "turbulent" state in question which must be acquired in an abscissa
(x, + 8x,) extremely close to x, (as demonstrated before), thus appears as a
state perturbed with respect to the laminar state in the same segment, meaning
that passage from the laminar to the "turbulent" state takes place over consid-
eration of a field perturbation u’ supplementary to the perturbation in v’ which
had given rise to the phenomenon in question. Thus, this alteration will be
designated as second perturbation uj;, a subject which will be studied in some-

what more detail.

36. Definition of the Family of Perturbations Permitting
Connectivity between the Two States

To have the Blasius field U(y) give way to the "stationary turbulent® field
defined above, it 1s necessary that a family of perturbations u’, of the type
described in Chapter V, becomes superposed in the segment x, + &%, such that
their cumulative time averages will make up the difference existing between the

two fields (U; - U_) at each level y (Fig.23). /126

Fach elementary perturbation is characterized by its constant such that (see
Chapt .V, Sects.31l.l and 34)
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@) = X i (9:... o — g, e-"m") fn & D

We have demonstrated before that only the harmonic perturbations can remain
finite since the pulsatlons are BU,, where

_ U,
pm= \/]\l——-“ G‘

is an ascending function of x. This means that, in x = x,, the

quantity B, (x.) must be inferior to or

at most equal to o, since otherwise a
4 7 value X < x, would exist where B, (x¥)
U, would assume the value o. This would
p mean that the point x7 rather than x,
would be the critical point at which
the laminar state would have to be re-~
placed by the "turbulent state", which
is contrary to the hypothesis estab-
T lished. Thus, the maximum value which
& 5 By can assume in x, is o, so that

8 U
Y% n— a5 < o
Yr
£ Le X i.e., since

0 Wall (v}
1 Yo 2 !
% =« km < 2 “’l

Fig.23 v Ze

Thus, B,

_ _ The minimal value to be considered
for B, 1s By, = O, corresponding to the case in which the perturbation ceases
being harmonic in x..
Consequently, /127
i, N
c

Between these limits, all values are poésible, i.e., values such as

i—a 2
v Te

In an arbitrary x, we have x < x,:

=ma or kn = (1 4+ m?) o

Bm (@) = \/(m"'+1)cc’—-u'*——=a\/m2+1___
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Here, X = x corresponds to B, = O such that

Ze _ e 1
x:c— mé or ‘x_:=1?"
Consequently,
If m > 1, we have
o 1 z 1
Z, m2<1 and z=1+m3<1-
On the other hand,
z
T, 2
T =T < 1
2
i.e., _
z .l
Xe < 2
If m < 1, we have
', z
o >1 and z <1,
but z
e
T > 1,
2
so that /128

X, —
—2‘3 <T < xe < Tee

So far as the development of pulsations with x is concerned, these cases
are shown in the accompanying diagrams (Figs.2, and 25):

E=ma, m <1,

B=mauq, m> 1.

The latter case is impossible for the above-indicated reasons; consequently,
no component uj; can exist for which m > 1 since this would result in X! < x.3
the critical point x{ where the state would necessarily stop being laminar under
the action of the perturbation applied from the exterior at a pulsation alU, would
be upstream of the point x., which is in contradiction with the stipulated condi-

tions. .
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Conversely, 0 < m < 1 represents possible evolutions whose limiting states
are shown in the accompanying diagrams (Figs.26 and 27).

Thus, the component of the second perturbation uj; , which furnishes a /129
response of pulsation malU, (m < 1) in x., is generated at a point x downstream
Xc
2
quently, the general expression of the second perturbation has the form

of , the point where a response of pulsation ¢U, in x, is generated. Conse-

‘l - ——
Wa= N aV/mt +1 (g1, eVt — g, e—Vm 1) [ (),
m=0
xc

where the laminar existence domain is

> <X < X o

37. Boundary Conditions

Here, we have to do with the particular form of the connectivity field
(U; ~ U.) in the segment x, which tends to zero as Y —» € + & and which contains
a discontinuity at the border & of the sublayer.

At the wall, it is necessary that uj; = O which leads to setting P, = P2,
in the perturbation expression (see Sect.31)

u'y = E Km (?1,,. efm¥ — P2 e—km“) /m (x! l)'
m

Consequently, an expansion in sinh k,Y in the thickness of the sublayer (o<
<Y < ¥) must be used.
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Since this thickness is very slight, it is possible to limit the expansion
to terms linear in Y by setting sinh kY = k,Y such that, at the interface
between sublayer and actual boundary layer, we obtain

Wi =Y Qo K 5iim Kim &+ i (@, ) 22 5+ V) oy K, fim (@, ).

m m

Above this interface (< Y<¢e +E, i.e., 0 < ¥y < £) a new perturbation
in uf, must be considered, which satisfies the above-investigated conditions
(specifically, the Navier conditions) having all properties stipulated above and
thus being of the form

u'y = E km (‘Px,,. efm¥ — Pam e_k"'v) fm (2, D).
m

Consequently, the terms k, and f; are the same as those given above, /130
except that the boundary layers with respect to y now are as follows:

For Y » £ + ¢, the quantity uj; will tend to zero (no matter what x and t
might be). Consequently, it is necessary that ¢; = O and we will set ¢ = 1
(since this forms a product with f, , nothing will be changed in the generality

of the solution). Hence,

ul —KnY
u',, =——‘.\,_‘ kme " fm (xy t)-
m

For Y = ¢, the quantity uf; should be linked with u{la of the sublayer.

This fact, as will be demonstrated below, makes it possible to determine the
thickness of the sublayer in each segment x(x < x.).

These observations imply:
1) For x = x.,, the quantity uf; is such that, at the time average and at

each level y, it will represent the deviation of the Blasius (laminar)
field U, (y) from the "stationary turbulent" field U (y), as defined

in Part I.
2) For x = iqn, the corresponding component of uy in m will vanish.

37.1 Equations Defining the Formation of Perturbations uf

The complete expression of uj;, allowing for the boundary conditions with
respect to y and also considering the expression of f, (x), will be as follows in

the actual boundary layer:
1 P
u'y = 2 aVm 4-1.e" " 1ty fm (&, ).

m=0

We must express now that the connectivity in x, is such that, at the time
average, we have
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[u'{f’]mem='lU'r"‘Ut-]x¢ at each level p,
1.e.’

Us@—Ue®) | N /i T T

1 ,
a 2 TV (i @ lmean
m=0

This represents an equation where the terms [f,(x.)],,., will be unknowns.

This can be written with a continuous variation of m such that O < m < 1:

W=D [

Tts solution is performed by a finite difference method, which makes it /131

necessary to set

m=n-3m,

c where dm ig a unitary variation and n

\ =
o -&-x_ . ma=1
2 is the rank of this variation.
0 3 ;’/xl m =0.67 We will take O < n < N where N
3 0.67 ¢ corresponds to
\ } _./] m =033 N:dm=1
o] Xe Xoaz Xe
2
) ‘ | (so that 0 < m < 1). Here, N is arbi-
) % X = %, m =0 trary but is taken sufficiently large
2
gso that ém = -—IJ\I'— will be sufficiently
Fj.g 028 low-
At each level y,, the above equa-
tion yields

U'r i —U!. EEEEE— e =
[—_‘”(y—)_a“(ﬂ)']% = f(o) () » exp (= y3) + [y V1 -+ 8m?. exp (a \/1 +dmd. y,),

+ @ \/1 +48m2~exp(x\/-f +48m;y,-)
+ e + fmy V1 +8m“-n2-exp(a\/1 +n"8—ma -y;)
+ e + foo) \/E-exp (oc \/Eyi).

This is an equation of (N + 1) urknowns f(o) (X,), f(1) (%c)ese £y (%), o-o

fcny (x.). Repeating this equation for N + 1 levels y,, we will obtain a Cramer
system defining the unknowns.

The previously given relations defining f, (x) = uf, (x,) (Chapt.V, Sect.33)
that specify their evolution with x can then be applied to each subsecript (n),
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from which the perturbation uj; will be known (at each value of x for };" < x<

< x, and at each level y) as a mean component and as a harmonic component. It
will be noted that, as a function of m = ndm, the domain of extent of each ele-
mentary perturbation m will differ from that of its neighbors and that the
quantities f(m) (x) will have evolution diagrams of the type given in Fig.28.

At each point X, = —l—x"—z——, the perturbation starts with a zero pulsa- /132
+ m
tion value and a zero time average. These increase with x, and the pulsation
will reach a value of aUgm at x = %, .

For x > x,, where the turbulent state is definitely established, the struc-
ture (time average, nonstationary elongation, frequency) will remain practically
invariant as demonstrated in Chapter V (Sect.34), under the condition that, in
each segment x, the level y(x) corresponding to the level y(x.) of the critical
segment 1s taken into consideration in accordance with the relation

y@ _ %@

Y@y~ B (zd)

This results from the boundary conditions (with respect to y) to be satisfied,
of the form given in Section 3.

38. Remarks on the Boundary with the Fxterior, in the Transition Domain

Xe

In the domain of transition (where x is such that < X< x.), the

border of the boundary layer is raised with respect to that of the original
layer in such a manner that it connects,
at the point x,, with the border of the
tpurbulent® layer (Fig.29).

However, the notion of laminar
boundary 8, , as mentioned previously, is
. t—— not specified by the laminar theory for
which the Blasius function U_(y) is con-

T 5 .
j U tinuous at 0 < y < » (which is also true
5,

for the adopted image function).

e The relations used above for de-
. L termining U, remain applicable to y >
3 c > §_, which means that also the Navier-
Stokes equations and the resultant
Fig.29 equations will remain wvalid.

£

Consequently, for studying the
perturbation uj , it is unnecessary to distinguish between domains where y <
< § and y > §_. It is certain that if - with the aid of a given criterion -

a value for x = };" can be assigned to § ( }2% >, then an application of the
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same criterion will furnish, in the transition, a continuous border line con- /133

Xe

2
, and are such that comnectedness exists between the

nected to 8;(x,) in x, (since all functions f3  are continuous between

Xe

and x,, are zero in

mean of uj and U; - U, in x,)*.

39+ Domain of Transition; Fxperimental Comparison

According to the above analysis, the necessary passage to the stationary
o, Yo
Y/

turbulent state in the critical segment x, = — (under the influence
o

of an external perturbation in v’/ of pulsation oU,) takes place as a consequence
of the continuous formation of a series of secondary harmonic perturbations in

’

uy at the interior of the boundary layer along the segment —é;—, X

Their frequency is of the increasing type, attaining its maximum at x,
which corresponds to a pulsation «U,.

These secondary perturbations contain a nonzero time average (comnected,
at each level y, to U; - U, in x,) as well as calculable nonstationary com-
ponents which remain active beyond x.,, i.e., in the turbulent domain.

Because of this fact, it was possible to define a domain of transition

Xe

extending, for the case of a plane plate, from to x, as well as a turbulent
state which justifies retaining its designation (permanence of a nonstationary
state).

It will be found that the extremely simple result obtained in this manner
[transition zone comprised between

R 1 «f /Ug\2 af  (Ug\2
T u()  m “"c=22"(79)]

can be verified by practical experiments of measuring the friction coefficient
~ because of the fact that turbulent friction is much higher than laminar frie-
tion. Thus, the transition zone is characterized by the zone of abrupt in-
crease of the coefficient of friction.

% We already mentioned (Chapt.IV, Sect.28) that, for the normal component Vi,
the problem presents itself in a different manner because of the fact that the
function V, of the Blasius theory leads to an anomaly for y - ». Thus, when-
ever it is a question of making a study of V, it is necessary to implicitly in-
troduce a limit 8, . For a study of U , as it is in question here, this restric-
tion is unnecessary.
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10°ck We will list here the early results
T Teorerical curve Ci°] of experiments made by Guienne (Ref.3)
N coretreat curve at the I.M.F.L.

| | irmé
K | Kdrmén curve
\.

VA

: ' LT Below, we are reproducing the per-
el 1] taining diagrams C}(®); Diagram III,
Ll/ A/f \ F‘ig 030 .

n kAL

It seems that the agreement with
the theoretical result mentioned above

'\ 7 77° is of specilal interest, since the
vxli : measurements were made on average states
2 ‘ l i;' . L 1 but are always somewhat interfered with
‘o x'/ i —o— V= 365 m/sec and are rendered less accurate by the
b L4 ""‘—'CV’” m/ sec presence of subjacent nonstationary /134
\"\‘\9A [/ ¢ “’”;::’i:f‘}é;”ed for components. The diagram also shows the

o slight deviation of the asymptotic
N\ i (1local) theoretical curve of Cf from the

{ - '\\ Ké, » . l .
i o\j/l/ rman curve; fan:L ly, as previously
RS \ Blasius carve statec_l,.the quantity C)}“c o@' the end of
S~ ] - transition more or less cgincides with
X [ the asymptotic quantity (7 (see Sect.
B SO S Sect 021-3) .

39.1 Diagram ITT
Fig.30 (Diagram ITI).
y_ The local friction coefficient
Ce(R ) is given in Fig.30.

The experiments by Guienne (Ref.3, p.l13, Fig.7) are given here.

The comparison with the theory covers the follow:'kng:
1) the asymptotic (local) curves C7 and the Kirmin curves;
2) the term C7 of the end of transition coinciding with the asymptotic
CFs
3) the transition extending from

; R, toR, .

LO. Recapitulation of the Transition Calculations /135

let us assume that the value €, of the thickness of the actual boundary
layer in x, is known, which is the segment where the "turbulent" state is neces-
sarily established.

In this case, the field [U,(y)lx. is defined together with the velocity

gradient at the wall [(_3Uf—>°] *. This makes the following possible:
xc

% For footnote see following page.
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1) Establish the law [U.(y) - U, (y)]xo and- solve the system of equations of
unknown quantities f , (x,) where 0 <m < 1 (see Sect.37), finally formulating

the laws of development of each quantity f,(x) with x varying from
by calculating each function

to x.,

o ()=l @

(see Sects.33 and 35, giving the calculation of the perturbation system generated

from

to x, by the functional relation written in x,

1 — —aV'm?
(U @)= Ve @l =« S VT e " low (xcn).

m=l

2) Calculate, in each segment x where < x < x, and at each level y,

the mean component of

B =0 =400@w2 =2, -aUaly ),

m
where
AUn(2) (1)
AUn 29~ "™ \ze/

3) Determine the velocity gradient at the wall, resulting from the same

IR IC ARSI IR G IR

In this mamer, the local friction coefficient will be fixed in each /136

segment :
QU
o = U’ [ J) l‘

The total friction coefficient is readily deduced from this by

% Taking into consideration that the local friction coefficient at x, is known:

RO (R
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Xe

c,(x)=%S:c; (x)da:—ég Ct (@) dz + %Scc; @) dz
‘2
2xch< > %S

Since, if the field is Murbulent! which is the case in x = x,

C} (x) dz.

lel"'

C/(x)=2.76.§,

the thickness of the turbulent layer will be such that

§e =

40.1 Calculation Procedure

The procedure_can then be the following: To start the calculation, a pro-
visional value of €, is assigned with which all of the above-defined operations

are performed after which g, —%EZ Ce(x,) is calculated. If there is a difference

from the initially adopted value, the latter 1s corrected by half the difference
and the calculation is resumed, and so on.

In fact, when making the numerical appllcatlon, it will be found that only
the wvery flrst terms f, (x, ) (those in which m is close to unity and for which

Xe

= —

14

Xn

Xy = 0.55 x,, X3 = 0.60 x, are necessary for completely taking care of the law
[Us(y) - U.(3) L, irrespective” of the value of x,.

Condensation of the domain of X, in which the elements composing the

perturbation about i; originate, then makes it possible -~ for calculating the

development of AU(y, x) and [(-§}>OJ ~ to use only one evolution law u(-%}—)
X (+]

corresponding to X; = 0.55 x, [denoted bY Wo ( i? )J; see Section 33 and the
table giving this law.
Since the local friction coefficient at x = x, where the flow is fully /137

nturbulent? is C?c = Cf , i.e., is sensibly the same as that of the asymptotic

¢ See Section 40.6, Diagram V, which shows the agreement of the imposed and image
curves AU(y) with three coefflclents corresponding to X3, Xz, Xg»

iy -

=
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solution (see Sect.21.3), it is easy to define the development of the local

z° and x,. In fact, since the local friction is

proportional to the velocity gradient U at the wall, we have

friction coefficient between

X RA =
¢t @ =1, (F) +u () [0, @) — ¢, @
Knowing the local friction at each point x, the total friction can be de-
duced from this as demonstrated above, permitting a determination of C,(x ).
Application of the relation of the turbulent state

C (x) = . ic
/] ( c) 2 P 3
will thus yield directly'x'

Te

== G @

The calculation can be continued until the development of the velocity

Xe

field U(y) from
Section.

to x, is determined, as indicated at the beginning of this

L0.2 Decomposition of the Mathematical Operations
for the Transition

The operations are as follows:

1) Fixation of the critical Reynolds number R(x,) =%. as a function of the
pulsation v and of the wavelength A of the external perturbation:

2n g XU« U
A -

472 VP T xR

o =

(where @; = 0.375 is the constant of the Blasius field).

2) Calculation, in the laminar regime, of the boundary layer thicknesses of

2

calculation, followed by calculation of the coefficients of friction

U VI 0.665 1.333
y=m W(;:’ 3 = 5.5 \/vo' Cr = JR C/,,=”\7—UT{. ete.

% Here, C¢(x,) obviously is lower than the asymptotic friction (corresponding
+to a "turbulent! boundary layer starting from x = 0).

the Blasius velocity fields at the points x; (—Eﬁ— < x < xc> retained for the
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3) Determination of the characteristics of "turbulent® flow in the seg~ /138

ment x..

a) Determination of the local (asymptotic) friction coefficient:

: 700.10~¢ 3 1 3.25
8-10-% 4 — R, it w
=T 700-10-¢  3.2573
LS . 1013 +__}\:~_¢ +'2R'—-:](

A

Ko

and determination of the development of local friction between > and x.:

0.665

VR,

Calculation of the law of evolution of the total friection:

O1@ = == + o (5) [, — 1.}

X x, 1¢=
C/ @) = Gy, (-2°> R AW eTer
3

and, specifically, of C,(x.).

Hence,
E= ;:z Cm) with 27 = 0.226,
i.e.,
LR'EO =C;(::C) R,
b) Determination of the velocity field ab x = x, with —— = 0.45:
0
Uy X XNy, O, ¥
-—I—Jo—g’__—ﬁ;—}—(l—ﬁ;)?—}—%—msmnn-i

(where [';L & are the values calculated at the end of Sect.6.2).
o

The same holds for the determination of the velocity gradient at the wall,
resulting from the value of Ti(x,):

2U 1 a
[(G7hl.= UL

[(b Ux,>:] -1 0865
VY Jo=, 2_1\}_ VR,

with, for the laminar state,

1,0




Formation of the quantities: /139

AUy z) =[Us(y) — U, (N]z, and [:A (%}q)ojt )

L) Application, in each segment x,, };—c < X < X,, of the following
formulas:

[U @l = Vs ey + o (22) AU @, 2]
1A ARCCHNR

for the plot of the fields sought.

and

Below, we are giving tables and diagrams of the elements, to facilitate the
numerical applications.

These diagrams refer to the calculation of the laws of evolution of the
total (and local) friction, for values of f, 1 x 10°, 2 x 1¢f and 3 x 10°
relative to the transition.

The results are given in Diagrams IV of Section 40.5.

The result referring to the total friction incorporates the asymptotic law
and the experimental points of Wieselsberger, Gebers, and Kempf (extracts from
Prandtl, loc. cit.). The agreement is satisfactory.

As a typical example, we also determined the velocity fields for the case
in which®, = 2.5 % 10°.

The resultant diagrams will be compared with those given by Guienne (Ref.3);
see the Diagrams VI in Section 40.7. The agreement is satisfactory for the ve~
locity field and becomes excellent for the development of the boundary layer
thicknesses in the transition.

L0.3 Determinations of the Laws C, (%), C'f'({R) in the
Transition (see Diagram IV)

First case: (R = 1. 108,

R 10-% ..., ../05 08 1 1.5 2 25 3 4 153 6 10 20
logR.ooooiiiiiiiin, 57 59 6 6.175 6,30 6.40 6.47% 6.60 6.7 6.78 7 7.3
Laminar C/L . 10%....] 1.888 1.33% 1.1

* Turbulent®
asymptotic (_3/ 103...| 5.63 5.06 4.40 4 3.75 3.56 3.42 3 2.62




(cont'd)
Transition C}+ 10°,...] 0.94 25 4.1 3.6 3,35 3.2 3.1 288 275 264 236 210

Transition (by inte-
gration) C;-'10%...,.| 1.88% 1.79 2.14 2.71 2.89 2,975 2,985 2.995 2.96 2,91 2.77 2.50

log C/-10%....0..0vua} 0,275 0,252 0.33% 0.432 0,46 0.47% 0.474 0,47¢ 0,47% 0.46* 0.44% 0.398

Whence: C, ((R.c) = 2,14. 10-3, (Rga = 0.5. 103, 'SE—C = 1.73.
e
Second case: (R = 2. 108, L
AR 10-8, . iviininnes 1 1.5 2 25 3 4 5 6 10 20
Transition C} . 103.... 0.6671.85 3.35 3.20 3.10 2.88 2.75 2.64 2,36 2.10
Transition C;» 10%..... 1.335 1,31 1.627 1.965 2.165 2,365 2.46 2.50 2.49% 2.35
log Cr- 10%. .00 vvauun, 0.126 0.117 0.212 0.294 0.334 0.374 0.39 0.397 0.39¢ 0.37

r

Whence: Cj (Re) = 1,627+ 103, (Rg, = 144+ 108, % = 1.84.

c

Third case: (R, = 3. 108,

100, e e 1.5 2 25 3 4 5 6 10 20

Transition CJ - 10°.... 0.5501.05 2.20 3,10 2.83 275 2.64 236 21
Transition C;+ 10%..... 110 102 1145 1305 179 1.99 2128 2.272.25 |
log G/ 10% .. ovuvsns. 0.0420.01 0.06 0.14¢ 0.25% 0.30 0.32" 0.36 0.35%]
Mence: ¢/ (Re) = 1395+ 103, (Rg, = 185-103, 35 = 1.935,
(4

LO., Calculation of the Transition for ®, = 2.5 % lOi

Development of the velocity field (see Diagrams VI):

_ v /13U T
7, (@) = 0422-10%,  Ty(e) =32:100 =25 (W)o =2 WOE“)
v 0

A value of (—%—-) = 1.88 is read from Diagram II.
X

c

Laminar Field

-l‘é- Ceeeseriaes « 0 |0.32% 0.36% 0.42° 0.48* 0.53% 0.63" 0.74 0,795 0.84% 1
pU—“ ............ 0 /058 0.65 0.74 0.80* 0.85 0.92" 0.97 0.685 0.99* 1 i
]

Re=25.10 8, =87 \/E%‘l.

y%.m—a.....‘ 0 lz.xz 3.17 373 419 4.63 550 6.45 691 7.35 8.70

12,2




(conttd)

Re = 2.25. 108,
y—=210-...... J 0 (277 3- 353 397 439 521 611 655 7- 823
‘Rc == 1-75‘ 100.
U,
y=210-. ..., ..| 0 |236 2.65 3.12 3.50 3.87 4.60 5.11 578 615 7.27 |
R, = 1.25. 10 '
U,
U100 0 {2- 224 264 296 3,28 3,89 4,50 490 520 6.15
“Turbulent” field = 1.88, Re = 2.5 108,
”E 0 |0.167 0.25 0.33% 0.50 0.667 0.75 083 1
U
'Uf veririeneens| ~0,45] 0,65% 0,73% 0,804 0,90* 0,95 0.97% 0.99% 1
y%ﬁ-lo-‘ ...... 0 2,74 4,10 5,28 8,20 10,9 123 13.7 16.3%
. | T —
Hence, for:
y%‘-’--xo—a...... 0 \1 2 3 4 6 § 10 12 14 16
the values of:
AU
N ‘ ? !0.31 0.19 0.06 -0.04% -0.12 -0.10° -0.06 -0.03 -0.007 O
(Re = 2254108 p = 0.84
—ﬁq.. e . 0.26 0.138 0.05 -0.037 -0.10 —0.09 -0.05 -0.02%6 -0.00¢ 0
0
e . L - ,A |
Re=1.75+10% p = 0.45°5.
éﬁll vevn.. 014 0.08% 0.027 -0.02 ~0.05% -0.047 -0.027 -0.01% -0.00° 0
(1]
BUT bU], v . (b U1') v
= . ¢ —_—— LIRS "3‘—-’-.-—. == i -_— T, Y 3.‘:‘..
Re = 2.5+ 109, [by 57 o T 10 =18—021=14 wien(F) 5 10-2 = 1.6
For R = 0.9 (R, = 2,25+ 10 (AU V. 10-% = 0,228 + 1.4+ 0.845 = 1,395
B oy /o Ug
QUN v - _
For (R = 0,7 R¢ = 1.75. 108 T7 )00+ 1078 = 0.25% + 1.4+ 0.45¢ = 0.90
U
For R = 0.5 R = 1.25 - 108 <W ot}— 10-% = 0.3,
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| ~ TLocal friction |

é \‘k ; coefficient

lO'.’C,(:;) Total friction coefficient E,/6‘
22 \ and (4/3), |

LN !
18 \\%/2-6’ 10

I.-G — \‘1‘ 1:6

N

U
i 14 \T\ i
1 12 1.2
— ! ! =6
0 ! 2 3 Rix1 0 ! 2 3 Rxud
1 - Asymptotic “turbulent® friction 1 - Friction coefficient at x = X,
2 - Laminar friction 92 « Ratio of “turbulent to laminar
3, 4, 5 - Transitions forRe= 1 % 104, boundary layer thicknesses at x = x,

2 x 106, 3 x 106

The above diagrams result from the figures given in the preceding tables.

L XA [ e

5.0 60 7.0 60 logR,
1 - Laminar friction
2 - Asymptotic “turbulent” friction, B and @ of experimental origin
2a - Asymptotic “turbulent”friction, B of theoretical origin & = 0

3, 4,5 - Transitions; for®R =1 * 106, 2 =108, 3 x 106 (integration of C*y)
@99 - Experimental points by Wieselsberger
00,0 - Experimental points by Gebers
AAA - Experimental points by Kempf.

Note: The experiments by Gebers contained a laminar zone and
thus a transition (Ref.2, p.l51).

Fig.31 (Diagrams IV); Coefficient of Total Friction
Comparison with Experiment).
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Ym/m PN ] ym/m =T
[ 6
$ 5 .
4 L é - _
3 3 §
U, /
S
Q== =1 H
2 / /w
A/
e
H \ ] - \{IL/’// ! //
'\\
T,

=5 0 5 10 15 AU m/sec 0 0 20 30
UpandU m/seq

Determination of the coefficients fy(x;) in the functional equation (see Sect. 39):
1 —
For Us = 35 / sec; [8 U ()]eo = [Us (1) — Us )l = Sa Vi + mo e~V 3+m0 1
0

B 78t al
be

&e

H=2i21af == Al af;= 215,a/3= 7.3 furnishing the points & of the diagram [AU(y)]

- ——12.1,a/; = 10.4, «/3 =™ — 1.60° furnishing the points O of the diagram (8 U(y)]

(/.~ 5.‘ =05 mm1; [~ E‘i - 0,53, m = 0,00% [y~ :’E - 0.60, m = o.ap)

Fig.32 (Diagrams V).
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- 1 = '
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N V-

LX) (%)
V%
Q\

// % /"/‘/ //’/
0 — —
0 02 04 06 08 0 02 04 06 06 0 02 04 06 08 0 02 04 06 08 !
Y Yo Y Vo Y Uo Y Yo

Development of the velocity field in the transition, Case Re =2.56¢10
Segments of calculation in R » 10=*m 1,25+ 1.75 - 2.25 - 2,50

10 T - “‘l'“[’_ T —U/Uo
=°l>g l - ‘//—.———— 0.9 »x
L 7 } | 2
X — i E
Q g _ ¥;_/_‘/x/i/ - - ;’r"‘ﬂ—- 0.8 L] g.

I :(;"" i e -

'1 — X °¥ ; B _-———’g"'— —‘TF_T_—W ] —-:——'—"5—' 07 °°9

3 n = R A o o I _— A =

=i SaE

o1 T LYy | | TT——e——ro———Tor Loma04 o

i 125 5 175 2 225 25 as
10°R (x)

Cal cul ated iso-velocity curves; (Re = 2.5+10°

Fig.33 (Diagrams VI); Comparison with Experiments by Guienne.
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L1l. Artificial Rearward Shift of the Transition

Tt has been shown previously (Sect.29) that, in the presence of an external
perturbation of pulsation ol,, the laminar state is unable to persist beyond
the critical segment x,, such that

In fact, starting from this point, the pressure gradients no longer are small
(since they cease tending to zero with increasing y and actually diverge /15
rapidly). The hypotheses of invariance of pressure, which form the basis of the
Blasius theory and which, from this theory, have taken the laminar field into
consideration, stop being applicable. The laminar state necessarily is replaced
by the other solution of the Navier-Stokes equations known as #stationary turbu-
lent" solution which does not involve any hypothesis of invariance of pressure.

However, the divergence of the pressure gradients with y is due to the

[0
[o]
@=ay J37Y

presence of the exponential e which, in turn, 1s due to the exponential

&Y existing in the function ¢(y) which enters the stream function ¢(x, y, t) of

perturbation ¢ = o(y)f(x, t) + glx, t).
Finally, the boundary conditions at the wall uw’/(0) = 0, v/(0) = 0, imposed

on the internal perturbation of the laminar layer formed in response to the
external perturbation, are responsible for the exponential in question.

Let usrecallthe most general form of the veloclty components of the in-
ternal perturbation (see Sect.28):

Wy =9y f=a(p ey —qre)f,
V() =—0fzs—gr=—(p,6¥ + ge) [’ — ¢'..

Iet us assume that the wall, which is no longer fixed, is induced to move
with a harmonic deformation motion such that

Y = Y cos « (x — U, ).

The normal velocity component %‘ZJ— = +y, Voo sin o(x - Ugt) must coincide

with the new perturbation boundary condition, meaning that the following must be
posed, at y = O which is the mean figure of the undulating wall with a pulsation
Q’Uo:

V' (0) = yo Ug « sin « (x — U, I).

It is no longer necessary to stipulate u’(0) = 0 since u’/(0) also becomes a
harmonic function of w(x - Upt), meaning that, instead of writing ¢ = @, as

147



done above, we can now write ¢, = 0, @z # 0. We will set @ = 1 (since ¢ always
forms a product with f, nothing is changed in the generality of the discussiong.
Hence,

V) =—ewf —ga U@ =cef

i.e., the conditions determining f and g are identical with those investigated
previously (see Sects.28 and 29):

’ e~ — 1 .
V' (y) = —(fo + g0) w7 *sina x—U, 0,

u @) =—« e—ﬂu(éqé*%_g%.cos {« Uo 0+ const).

(a-an/52)s

Thus, in the expressions given in Section 29, the exponential e
vanishes; simultaneously, the causes of divergence also vanish so that the

laminar state will disappear.

L1.1 Wall Structure Satisfying the Preceding Conditions

Can one more precisely define how to cause the occurrence of a characteris-
tiec harmonic motion of the wall?

Iet us assume that such a wall is formed by a membrane stretched over an
elastic medium at constant pressure po
which, in turn, is resting on the

| ) fixed wall itself. Iet us neglect
/\J\&_L/'\ the mass of the membrane. Then, at
/\J—\ —~ each instant, equilibrium exists be-

# p T tween the forces applied to the mem-
brane from the outside and its elastic

T o
S S S S S S reaction (Fig.3L).

Fig.3L In a zone with a curvature radius
R, let us consider a segment R . The
normal elastic component will be Td6.
The normal component due to the exterior and interior pressures will be Ap * Rd9,
with

1 "

R =¥ = — Y, «* cos « (T — U, {).

The condition Td® = ApRd® leads to
Ap=—y, T+ adcos a(x— Ul

If the modulus of elasticity of the membrane is low, then T = T, where T, is
a tension that is constant with respect to the deformation.

On the other hand,
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)

AU (O
Ap=p—p=—\ pv"—W()dx.

o

with
2U(© vz
__ﬁf—) =T, 2:, aia(\/‘b—::, vV =vsine (@t — Uy f) = y'y Uy asin a (z— Uy D).

Then, (14T

~ oY — AN A1
Ap=p“cosa(x Uol)UoAi_‘alm U,

when considering that the term inw \[)IX develops very slowly"‘L relative to the
o

term in ox. Thus, the relations to be satisfied are as follows:

!Io=‘fjo—a
and L
":'° cos & (z— Uy )+ Uy Y, a1 o \/%—?:—yoTou’cosa(.u—Uol)
i
=——%§Toacosa(x—-Uol).
Hence, Eal“( L

i vx
To=p U}~ \/U.:

% In fact, operating from a value x, taken as the origin of x, selected such
that sin o(x - Ugt) = sin o(Ax - Uyt) and integrating by parts twice in succes—
sion, we obtain

S\/"_:"f sina (x — Us t) dx == S\/"_(x'—t"J'Aﬁ) sina(Axz—Us)d Az
. L[]

- fY¥Ee o8 (Az—Us0) o 1 [y SAmm“_u.o“x
. o 2a U, x,

I vz, cosax(Ax—U,) 1 v .slnu(A:c-—U.t) Ax+L\/. v_cosa(dz—U,0)
o, ® 7% VU= « 2a V U.z, «

The last term can be neglected for the two first terms since —i—'— '\/Tvx—— is very
oXo

small with respect to W YX0_, In the two first terms, we identify

Uo
— v_z_.gosu(A:c—U.l)___ v_a:_.cosq(z—U,l).
U, [ Uo «
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which fixes the tension to be given to the membrane so that an external perturba-
tion of pulsation oU, will not cause transition to the turbulent state. It is
obvious that, in the solution obtained in this mammer, the latter must be linked
to the external perturbation and to the abscissa x.

These observations can be compared with recently reported findings on the
properties of the skin of certain cetaceans (dolphins, porpoises, etc.). It is
not entirely out of the question that skin muscles exist which adjust the ten-
sion of the skin to the frequency of perturbations of the ambient medium (at
velocities of 20 - 30 m/sec, these frequencies attain kilocycles).

It is also concelvable to provide the walls of wings and fuselages with /lL8
a skin of such type.

The analysis performed here does not reveal that the dissipative qualities
of the substance forming the skin (permeable or not) play any role at all. fp-
parently, only the elastic characteristics are of significance”.

Experiments would have to be made to verify or nullify these provisional
conclusions.

¥ We attempted to find some indications along this line by using a dissipative
permeable skin, but were unsuccessful.
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PART IIT

INTRODUCTION TO STUDIES OF THE COMPRESSIBLE STATE
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CHAPTER VII /151

GENERAL REMARKS ON THE TURBULENT COMPRESSIBIE
BOUNDARY LAYER AND HEAT TRANSFER

L2. General Scheme

Iet us return to the original schemes and to the hypotheses on the order of
magnitude, established in Part I (Sect.l). However, here the specific mass p,
the viscosity coefficient w, the heat transfer coefficient k, and the Kelvin
temperature T will be the variables used. Four new relations corresponding to
these four new variables must then be introduced into the problem. Classically,

these will be:
1) The equation of state of a perfect gas:
2o RT
g

-1
where R = pS%b =Y y ° gC, (with the subscript O referring to the reference

state); v i1s the polytropic constant of the gas and gC, its specific heat at
constant pressure related to unit mass, with the heat being expressed in
mechanical work umits.

2) An experimental relation concerning the development of viscosity with
temperature:

T\«
1= g (iT:) (== 0.8 for air).

3) The energy relation (Ref.)) whose complete expression reads:

3T T
chp[USE J U *’bx(kb ) jL( SI>
YU 2U 7
EC )+2( ) + Gy i) —sGa )}
Iet us recall that k is such that /152
dQ AbT
di-dS="ya’

Here, Q must be expressed in mechanical units.

) Finally, since P is the Prandtl mumber such that |

P=t “}cc" (0.7 for i)
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the fourth

relation reads

Here, v, gC,, P, w are the absolute gas constants.

The previously used relations (equation of continuity and Navier-Stokes
equation) will be written here as follows:

equation of continuity:

) d
57 (P +55 V=0,

Navier-Stokes equation [in two-dimensional regime; see Schlichting
(Ref b, p.51)]:

As in
Fig.l) :
1)

2)

3)

dp AU d U d (. 30U 273U sV
a—.c+P[U‘ﬁ“+V—+7]=* @”37“3(75%;);]

p 3V, AV V] 3V 20U 3V
by“[“ax*" + t]-‘by[“%zﬁ_ﬁ ﬁ*ﬂ)ﬂ

the incompressible case, the velocity scheme will be formed by (see

a constant gradient, from the wall to the boundary U; of the sub-
layer ¢
a principal tangential component linear in y:

U=1, +-g—y (with U=U,—U)

in the actual boundary layer E. This component is attached to a /153
small normal component V such that

EU=+ (e V)y=0;

a complementary tangential component u which is small compared to U
[to which a very small v corresponds, with (pu)/ + (pv)/ = 0l. Intro-
duction of this modification will permit satisfying the Navier—

Stokes equations.

We will also consider € as principal, all derivatives with respect to x as

small and of the second order, and

"
pUox

as very small so that the terms in
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p‘ L]

5 T are retained.

_§§7 * .2 _ can be neglected while those in
(o]

L43. Derivation of Equations

?fter this, we will return to the course followed in Part I (see Sects.2
and 3).

L3.1 BExpressing V by the Condition of Continuity

This condition is written as

EU)z+(pV)z=
or
p(Ue+ V) +Upz+ Vo'y=0
with _
U t
ve=Ui+(3)y
whence

14 4 4
V’y+uv+ U'u+(y> !l+£f(U1+gy>=0-
P E/z P g
Solution of this equation of the first order in V(y) will immediately furnish

1 , v UV v v, Uy,
vo=—;|Vuledrt () Levar e vfena (o]

to within a constant. This constant is the minimal normal component of the
boundary of the sublayer.

U.
[For this we actually have 0 < Y < ¢ and, with U = €1 Y,

van = —unCevay +u,{" 'YdY]

(Y)—-‘—-9 1x OP J‘OPz ’

so that /150,
V(¢)=—%[U’uS;deY+U,S:; p',YdY]

will be extremely small since U/, , py are of the second order of smallness and
since ¢ is very weak. Thus, V(e) £ 0.]

Consequently, V(y) will be of the same order of magnitude as the deriva-
tives with respect to x, i.e., of the second order.
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43.2 Navier-Stokes Equations and Elimination of Pregsure

Consequently, we put

Utat=U+4u with U=U;+yy (thus'U'”t-;o).
Viet=V 4 0.

By hypothesis, U,, £, U = Uy = U, are principal terms, whereag u is small and

of the first order while V, v are small and at most of the second order like all
derivatives with respect to x. Finally, p is also small so that the quantities
in U must be retained while those in pu of an order of smallness higher than
the second order must be neglected.

In the stationary regime, the Navier-Stokes equations (see Sect.L2) reduce
to

2p ' ' y 0/ 33U
PO U+ + (V40 Ul 2 (u2D),

a ! !
S5t UV + vl =0.

(In fact, the terms containing the products of u and p formed with the
derivatives with respect to x can be neglected. This is true also for the terms

. 3V . U 3 dU
inVay, Wy, b 55 b o and 5 [w - W])

To complete the condition of contimwity, we have

(ew)z+(p0)'y=0,

~

where (pv)! = p/v + pv/ is of the second order and where (pu)! = p/u + pu/ =
W py & pul{ = piu + puy
2 pu! is also of the second order (with pfu being of the third order).

Let us eliminate p between the two equations by deriving the first with
respect to y, the second with respect to x, and then subtracting term by term.

Hence, /155
(P1UUz+u2) + (V+ o) Uy 1y —[p | (U + u) (Ve + 0') 1 e

92 U
=30 UD =g w0

(since here Ujz = 0). This relation, equivalent to the ¥rotation" relation of
Part I, is written as follows:

Uy (e Uz + ptfe) + U (e U+ pu'a)y + 1 (o V)'y + (e 1)y | U'y
— 1 Ul (Vi + 02y [ —p U (Vs £ 0'a)) = Uy e
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The term {{ }} is of the fourth order of smallness and thus can be
neglected.

Since pu’ = (pu)/, pUs = (pU); - Up/ and since (pU); + (pV){ = 0, (pu)y +
+ (pv) = 0, the following succe531vely remains:

U, [(p UYa—U ¢'s + (p &)= + (e V)'u + (00)'4)
+ U U)'ey—(p'z U)'y + (o ) ey —p (V'ar+ 0"29] = U'y e

and

wdCI

.-

—[U% e+ (p'2U)p] U+ Ul(p U)'zy + (p ) 'ay—p (Va2 4 0"29)] =

In addition, we can write

(p0)zzpV'a (PV)erzpViy  (p0 e pds

[the terms in p,)v, — a (pxv)s ax (p7V) can ve neglected] This yields

(P0sy— (o Ot ( O sy (o V) e = - 2 e Ul '+ (¢ U
Iet us form
0= 7o (Ut 50) |+ (e%).
= (0 §) 4 T o (04 () 4 (B
(p,U)y——pxu<Ux+gy) s
Uy = o'a .

Hence,

I s R O ) B

leaving finally for the equation of "rotations"
0y T G W U
" . R , , , ' VT
(p ) 2y —(p 0)"a2 + P(‘E)x*“(PV) =z g0y gUuﬁ-(%) y% + E—-.
® U
U1+‘EU

Tt is also possible to consider a generalized stream function

YY) =9@2) /@
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such that
Vy=Cu), ¢==—I(uv).

Thus, for the equation of definition of the function ¢, we will obtain

m » U ! L4
LAPTE RV P(‘z)x—'(PV) xr== pxe

_ ) s
o @]+

The parallelism of this equation with its homolog obtained in Part I
(Sect.3) for the incompressible case is obvious. (At that time, we had V/; =

= w 2
- -[u (), =)

The terms on the left-hand side, with variable p, are those that had been
derived with constant p.

The terms on the right-hand side are new; the variations of §, enter here
into the analysis of the actual boundary layer.

43.3 Equation of Energy

The conditions of definition of p, k are those given above, namely

= (T>u i.e d_H_o)d_T

Ho T, ’ W T
ugC . gk du T
k= o iece., T\'=TL =0)'—‘T

It will also be noted that the absolute value of the pressure p is ex-—
pressed by a large number (10* x 1.033 under the so-called "normal® conditions,
in MKS units) which will always be the case except at very low pressures. How-
ever, for these the medium can no longer be considered as continuous so that the
Navier-Stokes equations of continuity are no longer applicable; the present
analysis cannot be extended to this case.

Iet us return to the Navier-Stokes equations (Sect.}3.2) for expressing /157
the pressure gradients:

i ? .
%—{E:.—-P[U Uzt u)+V+)U vl +STI-(‘LU W

The expression in brackets is of the second order of smallness. With the

conventions adopted, the term —5%7 (uUy) is of a less small order so that
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ap D
ST 5—!7 (= U").

Here, -gl;— = -pU(V/ + v/) is of the second order.

Hence, for the equation of state —E— = RT (where R=gC, * X :( = ), we

obtain by derivation

13T 1 2d3p 123p 1 , 1 2p 1 2p
T bx"‘p'Bx“}'b—.gfa'b_y(“U")“‘;'"’ig'—;‘r
since p is numerically very large.
Thus, -%; . —%%— will be of the second order of smallness, just as the

other derivatives with respect to x:
2 12 in princial
R i — R e il el o ¥ ., in r
= YL principa

Finally, this leads to

1¢eo,

p T ozconst
which is a relation resulbting from the stipulated hypotheses.
The above-given equation of energy (Sect.42), in its complete form, will

reduce - as is easy to demonstrate - to the terms of the right-hand side forming
principal terms

__b_ ' _b_ T dU\?
Uby“‘U”Hay("W)‘““(W) =0,
[all terms on the left-hand side, those in (V + v) op o /k of ) and all
2 ay » dX \ 3% s

terms in p except those written above will vanish as of the second order at
least]. This relation shows that, in principal, T is a function of U(x, y) and
of y:

T =T(U, y).

k, we obtain

5

Substituting u by p =
{4
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__.D L _ _b__ 30 L & ’3-‘ =
byl kby_ +gICp‘ Uay(l‘U”) - kU3, l_o.
Here,

)T 1) 2T U
3y— ay U-constaU.By'

(4

whence

sy L5 =

ll

ll

[ i bJ Umconat aUU' E:]
(57

1 2Ty _U,_] Yk
Usaconst bUa v 2U +Dy (b;')v—conac 3U.U ]

y + I\U'uz

E

[
>

l

b l

o/
g_

This leaves, for the equation of energy,

NT DA 2T 1 b“T p ,
[k Ty ["U DU°+an>+( ”by+l‘U> an ] 0.

The second expression in brackets has the following solution:

2T P
PRV Ao
or
T=:‘2‘g‘c; U3+ C; (constant with respect to U).
In the first bracket, in view of the fact that —— - -ob. - & . 9T
k 3y T oy

the following remains:
RT T
37+T<by> =0
which is also written as

3T 3T
Tm-1, —
m. bya.*_‘,)']'m 2(_) 0

However,

(Tm)y =mTm-. T, (Tm)e = m [(mn—1) Tm~3 T3, 4 Tm~1. T,

Iet us hereput m -~ 1 =w orm =w + 1. This yields
[T(u+ l)l 'U = 0,
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i.e., /159
[Tttd}'y =B, and T+ =B,y +B,,
where B, and B; are constants with respect to y (and U).

Thus, the general expression of T is

P 1
T=—-2g~———C;U3 + [Byy +By] '+

3T P ,
by = e VUt

B,

(14+«)[Byy + Balm

It should be noted here that all reasonings and all approximations made
with respect to the equation of energy apply just as well to the sublayer, when

Uy
€

setting U = Y for 0 <Y < ¢, as to the actual boundary layer, with

0<y<g, U=Ul+—g—y.

Since we retained the terms in U:z in all of the expansions, they are

applicable also to the zone of contact between the two layers (at the interior
of each of these, Uy”2 = 0).

The obtained solution T(U, y), which is an approximate solution, is valid
for the entire turbulent boundary layer.

Two particular cases can be specifically investigated:
First case:
Adiabatic wall (_@EL = 0.

o /u

(Here, g is the subscript referring to the state at the wall where U =10, Y =
:y:O,

Outside the boundary layer, we have
T(c+ &) = Tyimposed
with
U (": ~t- E) = Uo-

Hence,

B P 1
1=0, To=—g e Up+ (B, (e + &) +B,] 77,
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From this it follows that

P 14
B, = {:n +5G U;‘,-l °

so that
T=,___P__U3+T +___p__U1=,T __,_IZ___ Us— U+
24C, 0T 3gC, o= 1o 2gC,,( M2
Here, the "recovery factor" assumes the value P, with® /160

. P
Tw=T, +2‘§C;U;'

Second case:

The wall is at an imposed temperature T, since T, is also imposed. Then,

1
Tw=B,'** ier, B, = Tw(1+e),
P i_
To=_§—gC- Ui + [B, (e + &) + Twt+w)] 1 e,
Hence,
(1+w)
Bi= i [(To + 7y, 0) 7 — T
and

. 1
(Y)———U (Y)+[e+a? +zgC U‘)(H ’-—Twa+«»>(+na+»>]1+~.

The heat exchange between the wall and the fluid is then characterized by

-d'l—d':‘: (b 2;) where k= ko (T—“‘) .
We obtain

_dQ ke ‘w1 P \{1+w) 1
@& T+o +m<ﬂt> ‘EFH [(T”zgc;u'?) — T |y

%* Two different assumptions can be made with respect to this result:
The presented method is only approximate. A second approximation which
contains the terms of the second order, neglected in the equation of
energy, would permit greater accuracy.
The method does not incorporate the effects of the nonstationary per-
turbation components of which we know that they are always present in

the turbulent state.
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k, (1+a)

P
SO FoT; G+ E)[(T°+2.<JC Y

—_— Tw(l -i-u)] .

L43.,4 Investigation of the Velocity Field

No matter what case is considered, this study indicates that the tempera-
ture field in the turbulent layer, in first approximation, is comnected with the

following quantities:
(e +E), total thickness of the boundary layer;

Y in the sublayer, and U = U; + —éL y in the actual boundary

U:
layer; "
specific mass p, such that pT £ o T,. Similarly, y = o < 5 ) .
0
When studying the problem in y where U, U = U - Uy, € (and ¢) are /161

assumed as known", the term T(Y) will also be known from the instant at which
both boundary conditions are fixed.

w
Then, p(Y) and y = uo ( ;i ) will be known. This makes it possible, at
least numerically, to calculate V(y) (see its expression in Sect.}3.1).

In the equation in ¢ (Sect.}3.2), all terms other than those in § can be

calculated. If, specifically, the development p(y) and u(y) is
U
kUl + (—g——-)y
expressed in the form of algebraic expansions in powers of y such that p = p; +

+ 0,y * psy° ... (where the p, are a function only of x), then the soluthn will
be of the same type as those given in Part I (Sects.3.l, 3.2, etc.). This solu—
tion will furnish a decomposition parallel to that already obtained in the in-
compressible regime (terms in sin c,y and in powers of y; see Sect.5.1).

As before, it then becomes possible to use the equation previously derived
for the base of the actual boundary layer, together with the complementary terms,
for studying the problem in x.

When making Ul R U’ tend to zero, it should be possible to obtain the

asymptotic solution and to write the equation in E(x) homologous to eq.(Ib) in
Sections 17 and 18. Similarly, by means of the equation of momentum loss homo-
logous to eq.(IITb) in Sections 11.1 and 11.2, a relation for defining the
asymptotic friction C; will be obtained. Here, the form of the corresponding

solutions can be anticipated.

Our purpose in this Chapter was merely to demonstrate that, with the aid of
# Since ¢, no doubt, is still extremely small no great error will be committed
in neglecting it.

162




the basic schemes and the approximations used for the incompressible regime, the
compressible problem can be attacked in a simple and detailed mamner, even in
the presence of heat exchange.

This finally relates to the following facts:
possibility to write the equation in § as a complementary generalized
stream function (with respect to the complementary component u) in a
form very similar to that given for the incompressible regime, yielding
a solution of an analogous form if T(y) and, consequently, also u(y),
o(y) can be suitably expressed;
possibility to find, independently of the solution of the equation in §,
the law of evolution T(y) and, by the approximate relation obtained from
the adopted approximations pT = const, to define p(y), with both propo-
gitions resulting from a study of the equation of energy.
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CONCLUSIONS /162

The theory presented here leads to a set of conclusions whose major portion
merely reflects already known experimental phenomena.

In terms of these conclusions, the mechanism of flow in the boundary layer
on a plane plate would be characterized by the following properties:

1) At very low Reynolds numbers, the laminar local friction coefficient is
Jarger than that corresponding to the "turbulent" flow so that the laminar state
is at maximal entropy. Thus, this i1s the state that becomes established here;
it is rotational, is at constant pressure, and has weak trajectory curvatures.

If the exterior flow is perfectly calm and the wall is perfectly smooth,
the laminar state will persist up to the largest Reynolds numbers.

2) The exte;nal perturbations induce a reaction in the boundary layer (es-
sentially in v’)" of the same frequency as the excitation, a process that con-
tinues up to a certain critical Reynolds number linked to the excitation wave-
length:

1 2
5 Re = 0.0017 a3 %".

[~

Ko

From the segment defined in this mammer up to the segment x, (%, =

2
= 0.003L A® vg >, a series of secondary nonstationary responses (in u} ) of

increasing frequency and nonzero time averages are generated” such that the sum
of these averages, at each level y, of the segment x,, makes up the difference
existing between the "stationary turbulent" and laminar fields U(y), with the

"stationary turbulent" field being a solution of the Navier-Stokes equations at

nonconstant pressure.

R
The domain of the segments x such that 5 < R <R, is that of the transi-

tion along which nonstationary perturbations uff develop as a secondary response
to the external excitationj these perturbations are maintained as such beyond %,
with a well-defined frequency and elongation spectrum, to form a so-called
#turbulent" state exactly because of the presence of these nonstationary com-
ponents that become permanently established.

(The frequencies attain kilocycles or even tens of kilocycles.) The /163

situation thus is as follows:
The segment x, is the last segment in which the laminar state can persist

¥* Here, v’ is the normal nonstationary perturbation velocity component while u’
is the tangential component.
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since, in the presence of an external perturbation, pressure gradients
will develop there that are not compatible with the invariance of pres-—
sure characteristic for the laminar state.

The secondary perturbations (in ufy ) cannot propagate against the stream
in the harmonic state (possibility of unpredicted flow separation) and

Xe

camnot be generated upstream of if the critical segment correspond-

ing to the preceding statement is x,.

3) From the theory it is found that the mean turbulent field, at the same
value of R, is characterized with respect to the laminar field by considerable
increases in the boundary layer thickness and in the friction coefficient.

This is correlated with the configuration of the field U(y) such that, very
close to the wall, a sublayer with a strong gradient U; appears, superposed by a
layer in which the evolution of U is much slower than in the laminar layer (which
is slower the greater the thickness of the layer). It is in this sublayer that
the strongest rotations and the fundamental viscosity effects are located. The
thickness of the layer is a few tenths of a millimeter. The layer is bounded by
a line where the velocity (U,) assumes a well-defined value (about 0.45 Up).

The approximate theory indicates that the actual boundary layer has a finite
thickness; however, the hypotheses of the theory permit no formal conclusions
in this respect.

L) The turbulent states are such that, irrespective of the value of R,
condensation of the curves of the coefficient of friction into a single curve

4
(slorwly decreasing; in the main like V—§—> takes place for R >R,, defining an
asymptotic state of the boundary layer spectrum.

The curve Cj(R) intersects that of the laminar (local) friction coefficient
for a low value of the Reynolds number %, (usually, very small with respect
to_;_mo).

Thus, starting fromR,, the turbulent state is that of maximal entropy.
Nevertheless, if the turbulent state originates in®R., it will not continue wp
to R, but only to —%%ERC, since the secondary perturbations interior to uj can-

1

not exist upstream of R, .

5) The theory permits a detailed calculation of the velocity fields of a
turbulent boundary layer on a plane plate, from their evolution in the transi-
tion, from the localization of this transition, and from the development of the
local and total friction coefficients.

A comparison of the results of these calculations with practical experi-
ments shows agreement with the experimental results, almost as satisfactory as

165



that obtained - in the laminar regime - from the Blasius theory.

6) There exists a possibility of maintaining the laminar state if the /164
wall, instead of being rigid, is constituted of an elastic membrane stretched
over a constant-pressure layer, with the tension linked to the pulsation of the
external perturbation which, in the usual case, induces passage to the turbulent
state.

7) It is possible to proceed from here to a study of the compressible case
with heat exchange, using the same basic schemes and the same approximations,
as well as to attack the problem by means of a solution parallel to that used
for the incompressible case. .
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APPENDIX T
EXPANSION OF THE BLASIUS LAW IN THREE-TERM EXPONENTIALS

Let f'ﬁ('ﬂ) be the Blasius function such that £ = 1 - &(n).
=1 @T’] = §J is given.

i}
For M=y -;%— = 0, it is necessary that ¢ =

Let us put
Q) =a, P Gl L a, g a;e 4"
and also
T=oyn (whenceZ'y= &)
Then,

O=age ¥ pa e T L e =" [a, = + a5 6™ + a,).

For x = 0, the term §(0) = 1 leads to
a, +a; +a3=1.
@y = Dlge Ty =[—a, (1 —¢) eI g (1 49) e AT g ey,

whence
()] =‘D’o='_‘°_‘i[al(l"—5) + a5 (1 + &) + @]
= — o [a, + a5 + a3 — ¢ (@, — a;)] =—~E,~[1—c(a1—a,)],

which yields
i€ (a, — ag) — o = 'y,
i.e.,
a, — ag =1= %9+1_l-
Then,
e = %} O = w0, (1 — P e 0T g, (1 4 eppe 0% a; e
=ate “[a,(1—ee™ +a(1 + e + q,)
ot g e+ a6 + ay—2¢(a e — gy )],
Consequently,

168




(Dl: ol —2. a, c+_‘-"__ az e ~ Ll N — dy — ex(al—-az)
- * +ex = _
e +age +‘1a a1+a2+a,+s.t(al ay)

]

g W1—d "1_‘*‘_“3__‘114—_22>
1—2¢ a1+aa+aa3l+cx(ax—an a + a,

Since 1 /0!
a +a; +a;=1, ax——a,=-2~<a—t°+1>.
it follows that
- (Dlo
=241

LA 1—2( +1) e +ay)

q) =% _’0+1 c(al+a3) )
oy -

war [1— 2%+ ) 22 (% 1)
Q//Z

not retaining the term which can be neglected in ¢®. Then —g— = const if
/

&0 +1=0, i.e., if @; = -8 and a; = ag. This leaves
1

so that we have
O =e¢ " [24,cosh ca;n + ag].

Blasius field at U = O:

@ = ¢-93%n [73.5 — 72.5 cosh 0.037% .+ 7], (c = 0.1).

7 0 1 2 3 4 5
@ 1 0.645 0.375 0.172 0.050 ~0
1—o 0 0.355 0.625 0.828 0.950 ~1
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APPENDIX IT /169
CASE OF NONZERO VELOCITY GRADIENT ng OF THE EXTERIOR FIOW

The velocity spectrum of a laminar layer of a plane plate, inelined with
respect to the stream for which U0 # 0, is that given by Blasius and modified

by Polhausen:
U
G, =W+ x(l—x)

[T
where u = —%— and where fﬁ is the Blasius function 7| = y v; and -where,

. _ 8 ’
finally, A = —5— Ug, »

The change in the configuration of the field _HI(J_Y)_ is shown in Diagram VII
(o]

(Fig.35). It is also possible to use an image function of the same form as that

UI
given above, at least for sufficiently small —2%~, the only case which will be
investigated here: u

The coefficients a;, o; naturally will undergo modifications. The function Uf
will become

3 1 U,
Uy = [-—— U, ‘}f" a; o y2‘5 T’; + U'ox

X< “*Jzu\/ > ] TV

Returning to the statements in Chapter I, it is easy to demonstrate that
the Navier-Stokes equations for defining the stream function § of the comple-~
mentary velocities u, v contains Uj only at the second infinitesimal order if
Uo is small, as we are assuming here. Thus, nothing is changed in solving the
problem in Y, except the numerical values of the coefficients é which are here
determined by the Polhausen field.

.
1=
i

This field is distinguished from the Blasius field by using the notation_&f
which will be substituted for @; relative to the Blasius field. According to
the very configuration of these fields, we have

af > if Uy >0, &< if Uy <O
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In the presence of an external perturbation of pulsation ol,, the boundary
condition of the laminar domain will be

/170
& <} wherez? such thata< E" \/‘%_-, ar =a-—;:-2- . Hvo-,
(3
o5 U .
instead of the relative x, = Q; * .2 , for the same local value U, at condi~-
tions corresponding to Uéx = 0.

It can be proved directly that

¥ >z if Uy >0, af <z if U, <0

55
; |
‘ .
’ V74
, 1% /
4
! %, 2|
0 02 04 0.6 0.8 1y, Uo
Fig.35

Diagram VII (Fig.35):

1) Blasius field us, = 0.
s
o)

2) Polhausen field on > 0.
o

4
on

3) Polhausen field

< 0.
o
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APPENDIX IIT [171

PERTURBATION INTERIOR TO THE BOUNDARY LAYER;
SECOND APPROXIMATION

Let us return to the equation of space relative to a function f; :

o+ 1 (= ) =0, (1)

We again operate step by step, assumlng that at a point x = x, the solution

f(x9), £ff(xy) is known and then calculating, for x = x, + AX < BX  peing small)
the new values of f(x), f/(x). Then eq.(1l) is written as folloWS:
- . U Az
/‘3+/’l_kz_“‘,v—a;;i1—_—x?+"'ﬂ=0' (la)

The first approximation furnished the solution corresponding to

namely, since B is imaginary here"
o
K i’ Az —\/ K—a}-2 Ax
ot fiog T Ve ]

The solution of eq.(la) will produce a modification 6f(x) of this first
approximation. We will seek the value by linearigation, from which the follow-

ing condition for 6f; is obtained:
Az Ax?
st et ) o [t B (3222 Y] 2o .

Since L1712

o U °
[z = 1\/1‘2_“1\,; [fl—fﬂ +1 \/ — o vxo

+h)az. ]

% Areal B |p’ | , increasing indefinitely, could refer to the case of flow sepa- %
ration. This is not what we propose here. ,‘
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the solution 6f has the form
° U,
8f, = 1\/k’—f-a;‘;—z?u-
% [ o\'/k —ay \Tx—Ax —?\/ ‘—a.";u;- Ax]
She t —3fe ’ +b4+2cAx +3eAxt....

The expansion of &f/ must be continued to terms in Ax of a power higher
than unity since, because of the fact that the first approximation here satis-
= 0, the term £/ will contain Ax as factor since

. V% ’ 2 2 o
+ -
fies fy, fx (k o Sz

f; - f = 0 will vanish (to satisfy the boundary conditions).

The term on the right-hand side in brackets, with respect to the equation
in §f;, will contain A as factor.

The expression in brackets corresponding to the solution with zero right-
hand side identifies this solution with that of the first approximation and thus
can be incorporated into it (8f; = 8f, = 0).

For determining the coefficients b, ¢, e, the classical procedure of identi-
fying all terms of like power in Ax is followed in the general equation (2) which
now is written in the form

Ax Aa® \e U
6e+(3eAx‘+2cAa:+b)<k’—a‘ v:c>+ “ (-’L‘o = ..)1 \/ka-—-a‘ v;

X %h—/s+7 \/kﬂ—-az vlifo (/1+f,)Ax-——...§ =0,

whence
constant term:

6e+b< —a v[i°>=o;

term in Ax:

2c(k’ Uo)+a‘, Uo:\/kz_“‘l.&.,_xl.o(/l—h)=0;

d
1 vz, VI, v I,

term in Ax®:

U \/k’—-—tz —0

x [;}-z\/k'—« o 1= = (= 19 0.

]

3e(k’—a, v,
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Hence,

vy
6 2 e
4 vz
b = — — o ——— v = . /1 /2
ka__ai_U_f" T, i . ‘U0 /l +/2+_x Az_“q_U_O
i vz, v L v,

Tt can be verified that the related facts, concerning the propagations and
limitations stipulated by the first approximation of f(x, t), are encountered

again in the second approximation.

Iet us return first to the time condition:
K ' Up /) + [t + Uy [Tar =9 [k + 208 e o [y
i.e.,
D i B[] A+ Uy [ o B8 o] =y (K] o+ 20 [T [ = 0.
Here,

1

2 U,
[= L e+ Gt ) gm w88+ T e

with

f= \/a}‘ vao — k2, [i faand f; functions of time.
o

Since Ax is small, we can write f in the following form:

(M%%}’;)u -(rs——};—"—;—)u B+1az T
[=he +fae +hi=he +fse + [
by putting
2 o U
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let us enter f, made explicit in this manner, into the equation of time. /174
For the term having &'B*Y) & ag factor, we then obtain
I+ v+ 8 :
ThUB+ni@+yP+8—vik+28 B+3)*+ (B +1)¢]=0,
whence

- v Gy
u.(a+v>Lx o B ]A: o o

= fi, ,

/1‘_"/0

where f; is a constant.

Similarly,
V(B | 14 - AJ (.s—v)‘+kl at _
fi=fze | — A S
Finally,
k /'a‘_‘V kfi=0 yields [a 22 f;, e 2 const.

From this follow the general expressions of f:

I s s ]

2 2
Wtk w3l

e,

_ N
+ e —(e—n[as qu1{1+

which cause the following velocities of propagation to appear:

Q- v PHYE+R : v —2 le
dx—Uogl‘—m'—’*B—_FY—%. L1,=U0{1+U°~(S—B———QY+ g

The exponential terms reduce to constants for f,, if 8 + v = 0 and for f3,
if B vy = 0. These are written as

o . U
U, 2 Yy
a‘v__"kz"'q:;-—ﬁo——;.

o} vz k

i.e.,
ﬁ“v.'z:\) ( E >'

, for example equal to 2, we obtain

2
For a given
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i.e., /175
1 1
-—-—15—. +07o—-—oxzs.—c-)--§. i = 0.
Since
o? = u;‘vljé‘. B xl=aof %9 o = o (R,
the term L = 1 is extremely small. The expression in parentheses
207 X2 5 R
has ——— = < as root. It is easy to demonstrate that the perturbation ceases

xc
X
S~, as had been observed for the

being harmonic in the direct vicinity of
first approximation in the same case k® = 27, and that it must vanish in this
immediate vicinity (as well as upstream of -%f—).

So far as the function g is concerned, the space relation is written as
follows:

v U
gaé—“?’r%g’::‘o'

Introducing, as done before for f, into the solution g(x, t) of first ap~
proximation, a solution g + 6g of second approximation and linearizing with re-

spect to &g, we obtain
. Az
(=% +-)

g —af

0
v,

where

. U \/ntl._:i;_ Ax - ul‘_:'_“, Az
g’z = o} —0 g€ ° ~— g€ *e (first approximation).

let us repeat the reasoning used previously, by putting
Sg=0b0 +2c Az +3eldat

The condition in §gjf, Sg” leads to

U Uo Az Azt | .
“"'\}J;Z, a %{ax-—aa-*-\/mrm(a;+g=)]5 x°+2x:...§+6c
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gqvxo (' +2¢'82)+3eb2= o.
By identification to powers of Ax, we obtain /176
. U Ge 2
be—a}—2 ) =0 fomg e R,
o vz or b - —q; ,_I-_Iq_ 3e

a &
‘vz, vz,

., U 1 U, \3 N
it (= =0 o 2c’=5‘;\/«:%‘;;-_<g‘—gz>.

Us U, \3 1 U,
—al — v, 3e—-( ) [2x1 (hr— g —z \/0‘? ;‘_,%‘; (0 +03)] =0

or
3““'32;\/:2‘_‘,—6;—;[’1’—‘;%0—9* \/ (m-i-ga)]
The complete solution in g becomes
Je=(s+8y¢:) = \/4‘* ;U?OO <0x . “’-'VEA‘E':‘__ 7 c- «‘s%i.u)
"'xo \/Z ;I_Ja%_. [ﬂzrfog—a"'\/—?——(gx + ga)]
0
and

= \/ vao + g2 e—\/ ‘v.r. 2

g=ai¢

i 12?;_0_9_3—\/,”3: (91 + 93)

Ve[

=nec

—/ uef 1
o PR

+ gae ' Vo +

Az 4.4 g.

of the form of

g =0 e®TV g O gy,
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where g,, g2, g3 are functions of x4y, tp, and At. Then, A and p are written as
317

A—\/ 2 ) \/ Uo 1—y._ b N\/Tﬁ;

‘vxo Uo “‘v:c Uo.al‘xo = “‘v:z:o'

xl l
a va:
p,=-— ¢ ———,
T
0 \/ , Us
&
v Xy

The time equation in g reads

Dtg,cg-{-Uog gy g ze= 0.
For the term in & MMIA* | thig yields

FuG + ) +Uogr A+ )P —v o +p9 =0,

namely
’ v
Fu Ut +w) [ 1-F 0+ | o =0,
whence
A =g, e—UoO\-i-'d)Ll—E(l-l-u)]Al =g, e—u,()‘+ u.)Al.
Similarly,
I ) L1~ a—w e o ghevoo—u)m .

Finally, g5 = 8, is constant so that
glee (A + p) o, g Tw(ar—ray (A—w) g, e AW Br—ued) eHF—Uod0)

% [7\ { g MAT—UeA) — g, e—NAz—us A0 } MAx—uodl) + G2 e —MAT—UAD }]

+y'{gloe

The boundary conditions with respect to y are always u’(0) = O (in general)

and v/(0) = 0, with the first being directly satisfied by putting ¢ = @z = L.
Iet us also set 2
AX=Az—TU AL

—BAx)] eyAx

@fs+ gm0 =12+0c=[p{fe —f, ) +y (e + /e
=+ [7\ (91. N J2e e—mx) + (gle X + gz, e_Mx)] et
2 [B(f—/fa) + 2 (g, —g2) + ¥ (f1e + fa) + (01 + 92)]
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+AX[YiB U —f) + YU + [}
Frir (g, —g20) + (91, + G2) { + BB, +/a) ¥ r—1 )}
F A A (91, + 920) + 1 (91, F20)] o0 = 0.

Bach of the expressions in brackets must be canceled, which necessitates /178

two conditions to be written in each x, for which, in principle, ‘four constants
fy,, f2,, 81,, 82, are available.

However, it is necessary here to allow for the fact that g is imaginary.
For B = L°§, a cancellation of the expressions in brackets yields

TIT: B(h—/a) =0 andr (g, — g2) + ¥ (o + /o) + & Gso + ) = O;
SR: B2y (h,— /)] =0

and
A=) g+ ) F 200 (g1, + 03) + @2+ 2 (11, — g2 = 0.

It follows that flo = f, , so that only two conditions remain that deter-
o
mine g, and g2, as a function of x, and f; which remains always available® for
satisfying a complementary condition.

Since the only role assigned to the function g(x) is to permit satisfying
the condition at the wall v(O% = 0, its further calculation is unnecessary here.

For x, correspording to usual values of Reynolds numbers of the end of
transition (R, > 0.5 x 10°, for example), k will be large and will be expressed
in 10®. The second approximation modification

U
o %z
RN A

B— o}
vxe

8/’:=b=—

will then be small with respect to the corresponding function of first approxi-
mations

[z = ——(k’,— “?%' (f + 12,

¥ Here, f1° and fp  will be complex quantities in general, except if the arbi-

trary origin of time had been so selected as to keep these quantities real, as
we already demonstrated above.
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since, if X represents the value of x canceling k°® - of —v%" we obtain

2,0, E
3 e z" % vz 2 z
e LG " zk oz
e} T

Except in the domain x —» X, this simultaneously justifies the expansions

of second approximation carried out above as well as the pogsibility of limiting
the calculations to those of the first approximation.

For x close to X, it is necessary to return to the fundamental equation /179
[T+ [’z (kﬂ_ o E) =0,

vyze

which reduces to

/”.:3 0.

Its solution reads
['s = /_1 (x__;_i), f=h Lzz;x_)a

(where the propagation starts in such a manner that, in x = X, we have f = O,
f! = 0). This eliminates the singularity about X.
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APPENDIX IV
VEIOCITY DISTRIBUTION IN THE BOUNDARY SUBLAYER IN
INCOMPRESSIBIE REGIME

The boundary conditions, characterizing the boundary sublayer ¢ - as will
be. recalled - are as follows:

at the wall y, = O,
Uw = O. Vw = 0;
at the interface with the actual boundary layer, y = e,
U=1U; vwhere U;—» X 22045 Ug

constant for the asymptotic state;
local (asymptotic) friction coefficient, being

G-t — ot (30) 20y
%US SU) dy U; QY /w’

This coefficient must correspond to that calculated by the equation of loss
of momentum:

— 4/B —
Cr =075 \/_%- where B>~ 0.7.10%, (R = Uz .

v

Iet us return to the Navier-Stokes equations

1 2U 12U b’U
e x——l_ubz,'*'v [31‘

1 d¥p b“V b’V
ra a_'="'[U @ Ty

and to the continuity condition

[<

U
T+ =0.

e/

y

Hence,

/181
U

V) = —-S'; FY dy (since Vw = 0).
It follows from this that

V(e =— °UdJ
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is of the second order of smallness and ¢ is very small. Thus, we

where
have V(e) €0 and V(y) S0 for O<y < ¢.

With va which itself is very small, the Navier-Stokes equations in the
o

sublayer e reduce to

1 2p 2U . »U
o 3=V e TV
1 dp

o oy =0

Since the gradient p;/ is zero in the sublayer, the gradient p/ will depend only
on that existing along the interface U; with the actual boundary layer, for

which
V0, U = (U; + )yro

Hence,
1.22) ooy, 30 (2
(P.bx ‘=——Ux 0z + by’)y-w'
. . 30,
In the symptotic state, U; - X is constant and — = 0.
2
With our conventions, v <—2Tli—> is of an order higher than 2 and thus
y—0
can be neglected. Consequently, ( 2p_ = 0.
\ 3K Jyce

This places us into the frame of the Prandtl-Blasius approximations and
hypotheses for which the conditions originating from Navier-Stokes are written

as follows:

The sublayer is laminar (in the incompressible regime).

Iet us put, as is conventional,

oo U T [1
"=y va =97y \/( '
y=Vval, f(n)

‘P’U =71, q‘l:: =—YV,
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Hence, /182
1
U=Uy/% V=§T,,V"“’Uo[")/'n'—/]’
with, since V = O,
[l

Finally,

U,
v’

Uy = — U [Tp2e 27).10’ . Ulpe= Uy [Ty

The Navier-Stokes conditlon becomes

' [+ 2["»=0.

~

Since ﬂfﬁ f, the Blasius equation of the second order is obtained:
//"n‘ = 2l’”7)5%0.

Tt is known that the calculation procedure for f(T) consists in putting
A A
[ =Ao+ A +570+ . 57"+ -

and then in calculating f7., fls so as to write the Blasius relation in the form
of a polynomial to powers of Ti. Kach of the factors must be zero so that we
obtain

Ag=A;=0, A;=A=0, Ag=A,=0, A,=A,=0,...

AS
As#0,  Ag=—3},  A,=254A%...,

whence

A 2U U, A
UsUsAn—griqutt o | 3y=Us\[y2h[1—go3ym+ .. |

Let us substitute these expressions into the conditions given at the begin-
ning of this Appendix, concerning the characteristics of the sublayer, namely:

condition of the velocity gradient at the wall:

— 4/
2v U, - /B
U—z—Uo \/'\;‘EEA,=(,}'=0.75\ xR’

loe-’

4

U, : /- s N
A’=\/ 2% 0375\ %=°-370 VB®R 20061 VR;

v
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connectivity condition of velocity at the boundary e:
945 Ug= Uy Ay | e — ol !
o Ug oM Me=—ggiMe e |
i.e., /183
==
0.45 = 0.375 V5 R [-,,E_O_ML“S.@ Cne ]

Tt is easy to demonstrate that the term —9ﬁ§Z§— 3@35- N° is extremely small

with respect to unity, no matter what the value of ® > 10° might be.

Hence,
i, o 8.45 - 1
“TOIBYER T 0136 YR
and
o= U, 1
UgUOAR‘q=Uo'O.061¢U~\T Z‘:\.‘Y'
j.e.,

US" =~%.o.061 VR.Y for 0<Y<e
[

Thus U(Y) is quasi-linear in Y in the sublayer which, in the incompressible
regime, is laminar (Q.E.D.).

At the interface with the actual boundary layer a discontinuity of the ve-
locity gradient would then exist. However, this results from the approximations
made, specifically from the study of the actual boundary layer where the viscous

2
terms v : 2 have been neglected (in the problem in y), which is valid for Y >
y
> ¢ but is not strictly valid for Y = ¢. Thus, this discontinuity results from
a local failure of the calculation but does not imply any contradiction (with
respect to this subject, see Chapt.II, Sect.8).
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